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HOW DOES IT AFFECT YOU?

Typel
alveolar cell

Coronavirus Disease 2019 (COVID-19) is a pandemic Surfactant

caused by Severe Acute Respiratory Syndrome

Coronavirus 2, also called SARS-CoV-2. Despite the i Typell
i COVID-19, many are ’ "J alveotar cell

still unaware about how it affects the human body.

o«
SARS-CoV-2 starts its journey in the nose, *
mouth, or eyes and travels down to the alveoliin
the lungs. Alveoli are tiny sacs of air where gas
exchange occurs.
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Coronavirus Disease 2019 (COVID-19) is a pandemic
caused by Severe Acute Respiratory Syndrome
Coronavirus 2, also called SARS-CoV-2. Despite the
widespread awareness regarding COVID-19, many are
still unaware about how it affects the human body.
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Mimicking the physiological response of Infection
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Mimicking the physiological response of Infection
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Standard Mathematical Modeling for Biological Networks



Standard Mathematical Modeling for Biological Networks
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Standard Mathematical Modeling for Biological Networks
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Alternate modeling framework: Cybernetic model
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Reaction Kinetics

Reaction Framework:




Introducing cybernetic control variables
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Introducing cybernetic control variables
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Introducing cybernetic control variables
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Defining cybernetic control variables

Goal: Survival

Specific goal: Maximize biomass production rate within available resources

. . __ _unregulated __
Return on investment: Pi = T'Si_)Pi = kieiSl- v =




Diauxic growth of E. coli
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Kompala, D.S., et al., Investigation of bacterial growth on mixed substrates: experimental
evaluation of cybernetic models. Biotechnol Bioeng, 1986. 28(7): p. 1044-55.



Multicellular Systems
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Eicosanoid Metabolism
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Cybernetic Model of Eicosanoid Metabolism
2 objectives:
@ ° Cytokines
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Part1: Kinetic model :
Reaction Framework: s D
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Part2: Cybernetic Regulation
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Part3: Cybernetic Regulation
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Part3: Cybernetic Regulation
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What about the Cybernetic Goal
& How do we calculate p; =7



A closer look at Part 2
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Defining the Cybernetic Goal

TNFa = Z WiPGl'
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The Cybernetic Variables

GOAL: “dynamically maximize TNFa”

TNFa = Z WiPGi
[



The Cybernetic Variables

GOAL: “dynamically maximize TNFa”

TNFa = z w; PG; Relative Contribution to Product
. w;r; (pmol/s/ugDNA)
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The Cybernetic Variables

GOAL: “dynamically maximize TNFa”

TNFo = z w;PG; Relative Contribution to Product
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System Properties

Cell type:
Bone Marrow-Derived Macrophages

KLA/ATP timecourse on BMDM'’s: Experimental design M

+/-KLA  +/-ATP (a) Control (no KLA or ATP addition) “
(b) ATPonly(no KLA pretreatment)
(c) KLA pretreatment for 4h followed by ATP
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Lipid/mRNA measurements taken at 0 (ctrl only), 15m, 30m, 1h, 2h, 4h, 8h, 20h (relative to ATP addition)
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Parameter Estimation: Simulating ATP Stimulated BMDM Cells




Parameter Estimation: Simulating ATP Stimulated BMDM Cells
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Model Validation: Predicting KLA Primed & ATP Stimulated
BMDM Cells
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Model Validation: Predicting KLA Primed ATP Stimulated

BMDM Cells
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Cytokine storm and NSAIDS?
How can modeling help?

Guo XJ, Thomas PG. New fronts emerge in the influenza cytokine storm. Seminars
Immunopathology. 2017 Jul;39(5):541-550. DOI: 10.1007/s00281-017-0636-y.



NSAIDs and COX
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Questions?

A Cybernetic Approach to Modeling Lipid Metabolism in Mammalian Cells.
Processes 2018, 6(8),126; https://doi.org/10.3390/pr6080126
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