Human-centric Compression

Are humans the best lossy image compressors?

By Soham Mukherjee (Monta Vista), Sean Yang (St. Francis), and Ashu Bhown (Palo Alto)

Outline

- > Introduction
- Traditional Compressors
- Human Compression explained
- > Process
- Testing methodology
- > Results
- > Conclusions

Introduction

- A digital color image is typically represented as three channels: red, green, and blue, each of same resolution WxH as the image.
- Each pixel value in each channel is represented using 8-bits (1 byte)
 - 3 bytes per pixel
- Total of 3*W*H bytes per image uncompressed

Introduction

- Most modern compression schemes work in Y-U-V colorspace, with 4:2:0 color sampling
- Convert RGB to YUV
 - Y represents the luminance (the brightness) and U and V are the chrominance (color) components
 - Downsample U and V channels by factor of 2 in each dimension.

Introduction

Explosion in digital images generated

- High quality image capture devices ubiquitous
- Example: 12 mega-pixel camera on iPhone X
 - Total of 36 MB per image (RGB) or 18 MB per image (YUV 4:2:0)
 - Sharing a photo album with just 100 pictures takes 1.8 GB data to be transmitted
- > For ease of storage and sharing, compression is essential

Lossy vs Lossless

- Lossless compression would give us about 2:1 compression on an average not enough
- Some loss must be tolerated
 - Especially for everyday sharing, as long as the image conveys the same information
 - Speed of transmission more important than getting an exact replica

Traditional Modern Compressor

Transform & Quantization

> Transform

- Generally pixel neighboring one another will have similar values
- Because of this we can rotate the graph such that a majority of the values resides on an axis
- > Quantization
 - Rounds off the new pixel values on the rotated axis

Traditional Lossy Compressors

- ➤ 1992: JPEG
 - Joint Photographic Experts Group
 - Transform Encoding
- ➢ 2000: JPEG 2000

- improved compression encoding method, but never made it mainstream due to compatibility issues
- ➢ 2010: WebP
 - Lossy algorithm by Google
 - Entropy Encoding
 - predicts the color of a pixel by looking at the surrounding fragments
 - reduces the size that traditional lossy compression algorithms could by an average of 25%

Traditional Lossy Compressors Flaws

- At very low bit-rates, the reconstruction is not able to represent the original image closely enough
- Compression Artifacts- distortions of the image
 - Staircase noise (aliasing) along curving edges
 - Blockiness
 - Posterization
- Generation Loss- repeatedly compressing and decompressing the file will cause it to progressively lose quality

Overall Goals

- To provide a more human centric approach to image compression that could be eventually implemented by neural nets
- > To fully utilize the public resource of images already available on the Internet
- Question: Can we create more efficient image reconstructions by preserving only what humans perceive as important at low bit rates?
 - High level descriptions of parts of images rather than pixels
 - Using the English Language rather than encoding pixels

Human Compression Explained

- Our setup involves two distinct roles, referred to as the "describer" and the "reconstructor" respectively
- In short, the describer takes images and sends solely text-based information to the reconstructor, who attempts to recreate the image using any tools necessary

Experiment Set-up Using Skype

- Text Commands (Describer —> Reconstructor)
 - The describer is only allowed to send messages to the reconstructor through the built-in Skype text chat.
 - The describer must turn off their outgoing audio/video to avoid inadvertently leaking any information to the reconstructor.
- Feedback (Reconstructor —> Describer)
 - The reconstructor may talk to the describer through audio/video/text chat.
 - The reconstructor may share their partial reconstruction with the describer in real-time, by using the screen-share feature of Skype.

Links of Public Images from the Internet

End of Process

When the reconstruction has been completed by the reconstructor to the level of describer's satisfaction, the compression experiment is stopped.

- The transcript is processed by removing timestamps and compressing it using the bzip2 [16] compressor (an open source single file compressor program).
- The bzip2 encoded Skype transcript represents the final compressed representation of the input image.

The quality of image reconstruction can now be compared to that of a standard lossy image compressor, as described in the next section. k nice ok gimme a sec just a heads up its a photo with a sunset and a bunch of balloon im trying to find similar sunsets and ballons rn *hot air ballons https:// www.stockcutouts.com/Hot-Air-Balloon-Silhouette#.Wx7BZl0UvGI cut this out some how like maybe screenshot it?

balloons_data.txt

Plain Text - 5 KB

Testing methodology

Evaluating the quality of the reconstruction by the human compressors and WebP

1. Human compression: The given input image is compressed by the humans using the procedure described earlier. The size (in bytes) of the compressed representation of the image is recorded.

2. WebP compression: Next, we use the WebP compressor to lossily compress the input image to have a similar size as the human compression text representation.

3. Quality evaluation: Finally, we compare the quality of the WebP and human compressed images using human scorers on the Mechanical Turk platform.

Reaching Out To The Public

- We compare the quality of compressed images using human scorers (workers) on Amazon Mechanical Turk, a platform for conducting large scale surveys
- For each image, we display the original image and the human reconstruction and ask the workers to rate the reconstruction on a discrete scale of 1 to 10
- To capture the effects of human perception, the scale represents a general "level of satisfaction" with the reconstruction rather than a specific metric like accuracy
- We perform identical experiments for the WebP reconstructions. For every experiment, we collect 100 survey responses and obtain summary statistics.

What a worker would see:

Level of Satisfaction: 1 (completely unsatisfied) 2 3 4 5 6 7 8 9 10 (completely satisfied)

WebP

Selected Visual Results

Original

WebP

Selected Visual Results

Original

Human Compressed

COLUMN 2 18

D II THE REAL PROPERTY IN

WebP

Selected Visual Results

Original

Human Compressed

Original

Human Compressed

Original

Human

Original

WebP

Human Compressed

Original

WebP

Human Compressed

Results

Mturk scores for Human and WebP reconstruction

Image	Original	Compressed chat	WebP size	Mean score		Median score	
	size (KB)	size (KB)	(KB)	Human	WebP	Human	WebP
arch	1119	3.805	3.840	4.04	5.1	3	5
balloon	92	1.951	2.036	6.22	5.45	7	6
beachbridge	3263	4.604	4.676	4.34	3.92	4	4
eiffeltower	2245	4.363	4.394	5.98	5.77	6	6
face	1885	2.649	2.762	2.95	5.47	3	6
fire	4270	2.407	2.454	6.74	5.09	7	5
giraffe	5256	3.107	3.144	6.28	4.48	7	4
guitarman	1648	2.713	2.730	4.88	4.07	5	4
intersection	3751	3.157	3.238	6.8	4.15	7	4
rockwall	4205	6.613	6.674	4.41	4.85	4	5
sunsetlake	1505	4.077	4.088	5.08	4.82	5	5
train	3445	1.948	2.024	6.85	3.62	7	3
wolfsketch	1914	0.869	0.922	8.25	3.46	9	3

Conclusions

- ➢ Not a practical compression scheme, but
- Our experiment shows that human centric compression can be more powerful than traditional compression at very low bit rate
- Effective utilization of semantically and structurally similar images can dramatically improve compression ratio
 - Most public compressors do not take advantage of this rich public resource
 - > Shows room for growth for traditional compression
- The human compression framework is useful as an exploratory tool, but not practical due to its labor-intensive nature.

Work Of The Future

- Limitations of our process
 - our drawing/editing skills
 - our avoidance of sophisticated software for image editing
 - the difficulty of manually searching for similar images
 - the inefficiency of the English language
- Neural network based models may be natural candidates for alleviating these problems and could eventually performance even better than that we have shown in this work