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 Project Introduction 
The initial step of creating effective therapeutic approaches is to understand the disease 
causing mechanism in detail, which in many cases involves acquiring and analyzing 
massive amounts of biological data. However, conventional human-involved analysis 
methods present serious disadvantages when processing high-information content  
image data, such as user-introduced error/biases and low throughput. For instance, 
examining protein subcellular localization typically requires quantifying hundreds of cells 
per experiment through visual examining and manually outlining areas from images 
collected by microscopy. The procedure is not only laborious but also imprecise that 
would restrict the efficiency of data analysis process, and more importantly, the 
accuracy of the interpretation after the data analysis. 
 
The objective of this student-initiated proposal is to develop an automated 
quantification algorithm to extract and analyze quantitative biological information 
related to endocytosis of membrane proteins to facilitate data analysis and reduce 
user-introduced errors. 
 
Endocytosis is one of the key processes for regulating signaling pathways that are 
crucial for maintaining normal cellular functions and tissue development. For example, 
internalization of DLL1 protein is the triggering step of the Notch signaling pathway that 
when misregulated causes multiple developmental diseases and cancer. Therefore, 
understanding the regulatory mechanism of membrane protein internalization is a 
necessary step prior to discovering therapeutic approaches to those diseases. Budding 
yeast is a powerful model system to study endocytosis. Here we use a green-
fluorescent-protein (GFP) tagged membrane protein to determine the level of 
endocytosis via quantifying the cellular distribution of fluorescence signal collected 
through fluorescence microscopy. 
 
Working strategy: 
Stage 1: Isolate single cells from microscopic images with multiple cells  

Yeasts are unicellular model organisms that 
are routinely used to study distribution of biological 
products, such as proteins. In a microscopic image, 
there could be multiple yeast cells (Figure 1).  

For each cell, the distribution of protein can be 
different. To precisely obtain biological data from 
each individual cell,  identify the cell boundaries from 
the background, and further isolate each cell through 
acquiring the coordinates from the original image. 
We use “R” as our programming language to 
implement  the algorithm for image analysis.  

Based on the pixel intensity of each image, we 
apply a customized serial number of thresholds to the image, and generate a set of 
filtered images. Then, an ideal filtered image will be automatically selected, which most 

Figure 1:  Microscopic image with 
multiple yeast cells. 



of the background has been filtered out. Based on the pattern we found, we set rules for 
the selection:  
1. The filtered images are grouped into sequence sets of images that have the same 
amount of pixel clusters and each pixel cluster of the set of the images corresponds to 
the same cell component. 
2. The first image from the set which includes the largest number of filtered images will 
be the ideal cut off image. 
The resulting image selectively preserves the signal from the cells.  

In such an image, adjacent pixels within 
a certain area are clustered into individual 
components. Each component corresponds to a 
single cell in the original image. However, some 
of the components have larger area than the 
actual cells, because the pixels at the halo of 
cells are included, especially when the cells are 
bright (Figure 2). Therefore, we introduce few 
steps to identify the actual boundary from the 
crude cells.  

The strategy is to filter out the halo by 
applying a set of thresholds to the crude cells. 
After obtaining a series of filtered images, the total intensity of each image is calculated. 
The values of the intensities are plotted into a curve corresponding to their serial 
numbers. Since the pixel intensities of the dots in the halo are within a small range, they 
would be filtered out within a range of thresholds. The ideal thresholds could be 
identified by observing the inflection points of the curves. To manifest the inflection 
points, we convert the curve into peaks by plotting the fourth derivative of the curve. 

Throughout the process, the coordinates 
and the pixel intensities of each cell can be 
retrieved from the original image. Therefore, the 
accurate total pixel intensity of each cell can be 
collected (figure 3). 
 
 
Stage 2: Analyze target protein distribution in each single cell 
 Since proteins fulfill their functions at specific locations, tracking their distribution 
is an important way to study their activities. For example, in our case, the target 
membrane protein internalizes when the protein is not in the action. Therefore, precisely 
quantify the fraction of protein being internalized could help us to understand the level of 
activity. 

Therefore, we separate the source of signal into two parts: cell surface (e.g. cell 
membrane) and intracellular part. Since the area of the intracellular part of a cell is 
proportional to the area of the whole cell, we “shrink” the cell by a factor equal to the 

Figure 2: Isolate single cells from the 
cut-off image. 

Figure 3: Precisely define cell boundary 
and total intensity.   



average membrane thickness to remove the area 
of cell surface. Therefore, we can obtain the total 
pixel intensity of the intracellular part by summing 
up all the pixel values (Figure 4).  

Due to auto-fluorescence and the GFP on 
the target protein illuminating the surrounding area, 
some background signals exist in the image. 
Considering these background signals may lead to 
over-estimate the protein distribution within the cell, 
we need to filter out the backgrounds. Currently, we 
are plotting the histograms of the pixel intensity 
values within the cells to define the backgrounds 
and we are polishing the steps. After obtaining the 
background signals of each cell, we can extract the 
intracellular signal contribution of the target protein 
(Figure 5).  

The obtained pixel intensities (total cell, intracellular part, background) can fit to 
an equation that calculates the distribution of the target protein with an equation: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝑙𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝑙𝑙𝐼 =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 − 𝐵𝐼𝐼𝐵𝐵𝐼𝑙𝐼𝐼𝐵

𝑇𝑙𝐼𝐼𝐼 − 𝐵𝐼𝐼𝐵𝐵𝐼𝑙𝐼𝐼𝐵
 

Our algorithm enables us to systematically analyze sets of microscopy images in 
an automatic manner, that would not only increase the accuracy of the results and also 
reduce human operation time.  
 
Future direction:   In the future, after fully develop the algorithm, we would like to build 
graphical user interface of our program so that more users can easily use it. Meanwhile, 
we are also considering using machine learning to future improve the accuracy of 
identifying the cell membrane and background signal of a given image. 
 
 
 

Figure 4: Remove cell membrane and 
define internal intensity.   

Figure 5:  Define intracellular component 
and background intensity.   


