The Peeling Decoder : Theory and some Applications

Krishna R. Narayanan Thanks to Henry Pfister, Avinash Vem, Nagaraj Thenkarai Janakiraman, Kannan Ramchandran, Jean-Francois Chamberland

> Department of Electrical and Computer Engineering Texas A&M University

Message passing algorithms

- Remarkably successful in coding theory
- Used to design capacity-achieving codes/decoders for a variety of channels
- Tools have been developed to analyze their performance

Two main goals

Goal 1

Review some developments in modern coding theory and show how to analyze the performance of a simple peeling decoder for the BEC and p-ary symmetric channels.

Two main goals

Goal 1

Review some developments in modern coding theory and show how to analyze the performance of a simple peeling decoder for the BEC and *p*-ary symmetric channels.

Goal 2

Show that the following problems have the same structure as channel coding problems and show how to use the peeling decoder to solve them.

Problems

- Uncoordinated massive multiple access
- Sparse Fourier transform (SFT) computation
- Sparse Walsh-Hadamard transform computation
- Compressed sensing
 - Data stream computing
 - Group testing
 - Compressive phase retrieval

Remembering Sir David MacKay

David Mackay's rediscovery of LDPC codes and his very interesting book on Information Theory has undoubtedly had a big influence on the field.

Channel coding problem

- Transmit a message $\underline{m} = [m_1, \dots, m_k]^T$ through a binary erasure channel
- Encode the k-bit message <u>m</u> into a n-bit codeword <u>x</u>
- Redundancy is measured in terms of rate of the code R = k/n

Capacity achieving sequence of codes

Capacity achieving sequence of codes

• Capacity
$$C(\epsilon) = 1 - \epsilon$$

Capacity achieving sequence of codes

- Capacity $C(\epsilon) = 1 \epsilon$
- A sequence of codes { C^n }
- Probability of erasure P_e^n
- Rate Rⁿ
- Capacity achieving if $P_e^n \to 0$ as $n \to \infty$ while $R^n \to C$

Capacity achieving sequence of codes

- Capacity $C(\epsilon) = 1 \epsilon$
- A sequence of codes {Cⁿ}
- Probability of erasure P_e^n
- Rate Rⁿ
- Capacity achieving if $P_e^n \to 0$ as $n \to \infty$ while $R^n \to C$
- Find efficient encoders/decoders in terms encoding and decoding complexities

Capacity achieving sequence of codes

- Capacity $C(\epsilon) = 1 \epsilon$
- A sequence of codes {Cⁿ}
- Probability of erasure Pⁿ_e
- Rate Rⁿ
- Capacity achieving if $P_e^n \to 0$ as $n \to \infty$ while $R^n \to C$
- Find efficient encoders/decoders in terms encoding and decoding complexities

Significance of the erasure channel

- Introduced by Elias in 1954 as a toy example
- Has become the canonical model for coding theorists to gain insight

(n,k) Binary linear block codes - basics

$\left(n,k\right)$ Binary linear block codes - basics

${f G}$ is a $n imes k$ generator matrix	Example - (6,3) code
$\begin{bmatrix} g_{1,1} & \cdots & g_{k,l} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ g_{n,1} & & g_{k,l} \end{bmatrix} \begin{bmatrix} m_1 \\ \vdots \\ m_k \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$
Parity check matrix - ${f H}$ is a $(n-k) imes$	<i>n</i> matrix s.t. $\mathbf{HG} = 0 \Rightarrow \mathbf{H}\underline{x} = 0$

Tanner graph representation of codes

- Gallager'63, Tanner'81
- Parity check matrix implies that $\mathbf{H}\underline{x} = 0$
- Code constraints can be specified in terms of a bipartite (Tanner) graph

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$
$$x_1 \oplus x_3 \oplus x_4 = 0$$
$$x_1 \oplus x_2 \oplus x_5 = 0$$
$$x_2 \oplus x_3 \oplus x_6 = 0$$

Tanner Graph

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

$$H = \begin{bmatrix} x_1, x_2, x_3, x_4, x_5, x_6 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$
$$x_1 \oplus x_3 \oplus x_4 = 0$$
$$x_1 \oplus x_2 \oplus x_5 = 0$$
$$x_2 \oplus x_3 \oplus x_6 = 0$$

Received block

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

Peeling Step 1

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

Peeling Step 2

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

Peeling Step 2

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

- Zyablov and Pinsker'74, Luby et al '95
- Remove edges incident on known variable nodes and adjust check node values
- If there is a check node with a single edge, it can be recovered

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- · Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages \in {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

- Pass messages between variable nodes and check nodes along the edges
- Messages ∈ {value of var node (NE), erasure (E)}
- Var-to-check node message is NE if at least one incoming message is NE
- Check-to-var node message is NE if all other incoming messages are NE

Peeling decoder is a greedy decoder

Peeling decoder is a greedy decoder

Linearly independent set of equations $x_1 \oplus x_1 \oplus x_3 = x_4$ $x_1 \oplus x_2 = x_5$ $x_2 \oplus x_3 = x_6$

Degree distributions

• VN d.d. from node perspective - $L(x) = \sum_i L_i x^i = \frac{3}{6}x + \frac{2}{6}x^2 + \frac{1}{6}x^3$

Degree distributions

Variable nodes

- VN d.d. from node perspective $L(x) = \sum_i L_i x^i = \frac{3}{6}x + \frac{2}{6}x^2 + \frac{1}{6}x^3$
- VN d.d. from edge perspective $\lambda(x) = \sum_i \lambda_i x^{i-1} = \frac{3}{10} + \frac{4}{10}x + \frac{3}{10}x^2$

Degree distributions

Variable nodes

- VN d.d. from node perspective $L(x) = \sum_i L_i x^i = \frac{3}{6}x + \frac{2}{6}x^2 + \frac{1}{6}x^3$
- VN d.d. from edge perspective $\lambda(x) = \sum_i \lambda_i x^{i-1} = \frac{3}{10} + \frac{4}{10}x + \frac{3}{10}x^2$
- CN d.d. from node perspective $R(x) = \sum_i R_i x^i = \frac{2}{3}x^3 + \frac{1}{3}x^4$
Degree distributions

Variable nodes

- VN d.d. from node perspective $L(x) = \sum_i L_i x^i = \frac{3}{6}x + \frac{2}{6}x^2 + \frac{1}{6}x^3$
- VN d.d. from edge perspective $\lambda(x) = \sum_i \lambda_i x^{i-1} = \frac{3}{10} + \frac{4}{10}x + \frac{3}{10}x^2$
- CN d.d. from node perspective $R(x) = \sum_i R_i x^i = \frac{2}{3}x^3 + \frac{1}{3}x^4$
- CN d.d. from edge perspective $\rho(x) = \sum_i \rho_i x^{i-1} = \frac{6}{10} x^2 + \frac{4}{10} x^3$

Degree distributions

• Rate -
$$r(\lambda, \rho) = 1 - \frac{l_{avg}}{r_{avg}} = 1 - \frac{\int_0^1 \rho(x) dx}{\int_0^1 \lambda(x) dx}$$

Variable nodes

- VN d.d. from node perspective $L(x) = \sum_i L_i x^i = \frac{3}{6}x + \frac{2}{6}x^2 + \frac{1}{6}x^3$
- VN d.d. from edge perspective $\lambda(x) = \sum_i \lambda_i x^{i-1} = \frac{3}{10} + \frac{4}{10}x + \frac{3}{10}x^2$
- CN d.d. from node perspective $R(x) = \sum_i R_i x^i = \frac{2}{3}x^3 + \frac{1}{3}x^4$
- CN d.d. from edge perspective $\rho(x) = \sum_i \rho_i x^{i-1} = \frac{6}{10} x^2 + \frac{4}{10} x^3$

LDPC code ensemble

$LDPC(n, \lambda, \rho)$ ensemble

- Ensemble of codes obtained by using different permutations $\boldsymbol{\pi}$
- Assume there is only one edge between every var node and check node
- For every n, we get an ensemble of codes with the same $(\lambda,
 ho)$
- Low density parity check (LDPC) ensemble if graph is of low density

• If we pick a code uniformly at random from the LDPC (n, λ, ρ) ensemble and use it over a BEC (ϵ) with l iterations of message passing decoding, what will be the probability of erasure P_e^n in the limit $l, n \to \infty$?

- If we pick a code uniformly at random from the LDPC (n, λ, ρ) ensemble and use it over a BEC (ϵ) with l iterations of message passing decoding, what will be the probability of erasure P_e^n in the limit $l, n \to \infty$?
 - Analyze the average prob. of erasure over the ensemble
 - For almost all realizations P_e^n concentrates around the average

- If we pick a code uniformly at random from the LDPC (n, λ, ρ) ensemble and use it over a BEC (ϵ) with l iterations of message passing decoding, what will be the probability of erasure P_e^n in the limit $l, n \to \infty$?
 - Analyze the average prob. of erasure over the ensemble
 - For almost all realizations P_e^n concentrates around the average

Relevant literature

- Papers by Luby, Mitzenmacher, Shokrollahi, Spielman, Stemann 97-'02
- Explained in Modern coding theory by Richardson and Urbanke
- Henry Pfister's course notes on his webpage

Computation graph

Computation graph $C_l(x_1, \lambda, \rho)$ of bit x_1 of depth l (*l*-iterations) is the neighborhood graph of node x_1 of radius l.

Computation graph

Computation graph $C_l(x_1, \lambda, \rho)$ of bit x_1 of depth l (*l*-iterations) is the neighborhood graph of node x_1 of radius l. Consider the example $C_{l=1}(\lambda(x) = x, \rho(x) = x^2)$

Computation graph

Computation graph $C_l(x_1, \lambda, \rho)$ of bit x_1 of depth l (*l*-iterations) is the neighborhood graph of node x_1 of radius l. Consider the example $C_{l=1}(\lambda(x) = x, \rho(x) = x^2)$

Computation tree

For fixed (l_{max}, r_{max}) , in the limit of large block lengths a computation graph of depth-l looks like a tree with high probability

Computation Tree Ensemble- $\mathcal{T}_l(\lambda, \rho)$

Ensemble of bipartite trees of depth l rooted in a variable node (VN) where

- Root node has i children(CN's) with probability L_i
- Each VN has i children(CN's) with probability λ_i
- Each CN has i children(VN's) with probability ρ_i

Recall

•
$$\rho(x) = \sum_{i} \rho_{i} x^{i-1}$$

• $\sum_{i} \rho_{i} = 1$

•
$$\lambda(x) = \sum_{i} \lambda_i x^{i-1}$$

•
$$\sum_i \lambda_i = 1$$

Recursion

$$x_0 = \epsilon$$

 $y_l = 1 - \rho(1 - x_{l-1})$

Recall

•
$$\rho(x) = \sum_{i} \rho_{i} x^{i-1}$$

• $\sum_{i} \rho_{i} = 1$

•
$$\lambda(x) = \sum_{i} \lambda_{i} x^{i-1}$$

•
$$\sum_i \lambda_i = 1$$

Recursion

$$x_0 = \epsilon$$

 $y_l = 1 - \rho(1 - x_{l-1})$
 $x_l = \epsilon \lambda(y_l)$

Recall

•
$$\rho(x) = \sum_{i} \rho_i x^{i-1}$$

• $\sum_{i} \rho_i = 1$

•
$$\lambda(x) = \sum_{i} \lambda_{i} x^{i-1}$$

• $\sum_{i} \lambda_{i} = 1$

•
$$\sum_i \lambda_i = 1$$

Recursion

$$\begin{aligned} x_0 &= \epsilon \\ y_l &= 1 - \rho(1 - x_{l-1}) \\ x_l &= \epsilon \lambda(y_l) \\ x_l &= \epsilon \lambda(1 - \rho(1 - x_{l-1})) \end{aligned}$$

$$\lambda(x) = x^2, \rho(x) = \rho_4 x^3 + \rho_5 x^4$$

$$x_{1} = \epsilon (y_{1}^{(3)})^{2}$$

$$y_{1}^{(3)} = 1 - (1 - \epsilon)^{3}$$

$$x_{0} = \epsilon$$

$$P(T) = \rho_{4}^{2}$$

$$\lambda(x) = x^2, \rho(x) = \rho_4 x^3 + \rho_5 x^4$$

$$x_{1} = \epsilon y_{1}^{(3)} y_{1}^{(4)}$$

$$y_{1}^{(3)} = 1 - (1 - \epsilon)^{3}$$

$$y_{1}^{(4)} = 1 - (1 - \epsilon)^{4}$$

$$x_{0} = \epsilon$$

$$P(T) = 2\rho_{4}\rho_{5}$$

$$\lambda(x) = x^2, \rho(x) = \rho_4 x^3 + \rho_5 x^4$$

$$\lambda(x) = x^2, \rho(x) = \rho_4 x^3 + \rho_5 x^4$$

$$\begin{split} \mathbb{E}_{\mathsf{LDPC}(\lambda,\rho)}[x_1] &= \sum_{T \in \mathcal{T}_1(\lambda,\rho)} P(T) * x_1(T,\epsilon) \\ &= \epsilon (\rho_4 y_1^{(3)} + \rho_5 y_1^{(4)})^2 \\ &= \epsilon (1 - \rho_4 (1 - \epsilon)^3 - \rho_5 (1 - \epsilon)^4)^2 \\ &= \epsilon \lambda (1 - \rho (1 - \epsilon)) \end{split}$$

Threshold

Convergence condition

$$x_{l} = \epsilon \lambda (1 - \rho (1 - x_{l-1})) = f(\epsilon, x_{l-1})$$

 x_l converges to 0 if $f(\epsilon, x) < x, x \in (0, \epsilon]$ There is a fixed point if $f(\epsilon, x) = x$, for some $x \in (0, \epsilon]$

Threshold

Convergence condition

$$x_l = \epsilon \lambda (1 - \rho (1 - x_{l-1})) = f(\epsilon, x_{l-1})$$

 x_l converges to 0 if $f(\epsilon, x) < x, x \in (0, \epsilon]$ There is a fixed point if $f(\epsilon, x) = x$, for some $x \in (0, \epsilon]$

Threshold

Convergence condition

$$x_l = \epsilon \lambda (1 - \rho(1 - x_{l-1})) = f(\epsilon, x_{l-1})$$

 x_l converges to 0 if $f(\epsilon, x) < x, x \in (0, \epsilon]$ There is a fixed point if $f(\epsilon, x) = x$, for some $x \in (0, \epsilon]$

The threshold $\epsilon^{\mathsf{BP}}(\lambda,\rho)$ is defined as

 $\epsilon^{\mathsf{BP}}(\lambda,\rho) = \sup\{\epsilon \in [0,1] : x_l \to 0 \text{ as } l \to \infty\}$

19/90

Exit charts - Ashikmin, Kramer, ten Brink'04

Node functions

- Var node function: $v_{\epsilon}(x) = \epsilon \lambda(x)$
- Check node function: $c(x) = 1 \rho(1 x)$

Optimality of EXIT chart matching

- Var node function: $v_{\epsilon}(x) = \epsilon \lambda(x)$
- Check node function: $c(x) = 1 \rho(1-x)$

- Understand what degree distributions $(\lambda(x),\rho(x))$ mean

Summary

- Understand what degree distributions $(\lambda(x), \rho(x))$ mean
- Given a (λ, ρ) and ϵ , what will be the P_e^n as $l, n \to \infty$?

Summary

- Understand what degree distributions $(\lambda(x),\rho(x))$ mean
- Given a (λ,ρ) and $\epsilon,$ what will be the P_e^n as $l,n\to\infty$?
- Can you compute the threshold?

Summary

- Understand what degree distributions $(\lambda(x),\rho(x))$ mean
- Given a (λ, ρ) and ϵ , what will be the P_e^n as $l, n \to \infty$?
- Can you compute the threshold?
- Is a $(\lambda(x), \rho(x))$ pair optimal?

Application 1

The changing mobile landscape

- 5G will not only be "4G but faster" but will support new models such as IoT
- Current wireless a few devices with sustained connectivity
- Future wireless massive no. of devices requesting sporadic connectivity

The changing mobile landscape

- · Current wireless a few devices with sustained connectivity
- Future wireless many uncoordinated devices requesting sporadic connectivity

The changing mobile landscape

- · Current wireless a few devices with sustained connectivity
- Future wireless many uncoordinated devices requesting sporadic connectivity

A possible MAC frame structure

- Total of \boldsymbol{Q} users out of which \boldsymbol{K} are active
- Q is very large and K is a small fraction of Q

Frame length M

- Beacon is used to obtain coarse synchronization
- Each user transmits a signature sequence
- BS estimates the no. of users (K) (Chen, Guo '14, Calderbank)
- Picks an M and broadcasts it

System under consideration

- Wireless network with K distributed users (no coordination)
- Each user has one packet of info to transmit to a central receiver
- Total time is split into M slots (packet duration)
 - Some policy used to decide if they transmit in *j*-th slot or not
 - $\bullet\,$ Receiver knows the set of users transmitting in the j-th slot

Random access paradigm

- *k*-th user:
 - Generates a random variable $D_k \in \{1, \dots, M\}$
 - Generating PMF is f_D , i.e., $Pr(D_k = i) = f_D[i]$
 - Transmits during D_k time slots drawn uniformly from $\{1, \ldots, M\}$

Time slots

Users

• In this example, $D_3 = 3$ and user 3 transmits in slots $\{1, 3, 5\}$

Iterative interference cancelation

- If exactly one user transmits per slot, then packet is decoded w.h.p.
- If more than one user transmits per slot, then collision
 - Rx subtracts previously decoded packets from collided packets
 - If Rx can subtract all but one, remaining packet is decoded w.h.p.
 - Otherwise, the received packet is saved for future processing
 - Once all K packets recovered, an ACK terminates the transmission
 - Similar to interference cancellation in multi-user detection

Users Time slots

- Suppose M time slots needed to successfully transmit all K packets
- Then, the efficiency of the system is said to be

 $\eta = K/M \text{ packets/slot}$
Graphical representation (Liva 2012)

- Tanner graph representation for the transmission scheme
- Variable nodes \leftrightarrow users, Check nodes \leftrightarrow received packets
- Message-passing decoder peeling decoder for the erasure channel

Graphical representation (Liva 2012)

- Tanner graph representation for the transmission scheme
- Variable nodes \leftrightarrow users, Check nodes \leftrightarrow received packets
- Message-passing decoder peeling decoder for the erasure channel

L_i (R_i) - fraction of left (right) nodes with degree i - notice that L_i = f_D[i]
λ_i (ρ_i) - fraction of edges connected to left (right) nodes with deg i

Low density generator matrix (LDGM) codes

- $L(x) = \frac{1}{4}x + \frac{1}{4}x^2 + \frac{1}{2}x^3$
- $\lambda(x) = \frac{1}{9} + \frac{2}{9}x + \frac{6}{9}x^2$
- $R(x) = \frac{1}{5}x + \frac{4}{5}x^2$
- $\rho(x) = \frac{1}{9} + \frac{8}{9}x$
- Rate $R = \frac{\int_0^1 \lambda(x) \, dx}{\int_0^1 \rho(x) \, dx}$

DE for LDPC $x_{0} = \epsilon$ $y_{l} = 1 - \rho(1 - x_{l-1})$ $x_{l} = \epsilon \lambda(y_{l})$ $x_{l} = \epsilon \lambda(1 - \rho(1 - x_{l-1}))$

DE for LDGM

$$\begin{aligned}
x_0 &= 1 \\
y_l &= 1 - \rho(1 - x_{l-1}) \\
x_l &= \lambda(y_l) \\
x_l &= \lambda(1 - \rho(1 - x_{l-1}))
\end{aligned}$$

Poisson approximation for check node d.d.

Slot transmission probability

User k transmits in slot m with prob. $p = \sum_{i=1}^{\infty} L_i \frac{i}{M} = \frac{\mathbf{1}_{avg}}{M} = \frac{\mathbf{r}_{avg}}{K}$

Poisson approximation for check node d.d.

Slot transmission probability

User k transmits in slot m with prob.
$$p = \sum_{i=1}^{\infty} L_i \frac{i}{M} = \frac{\mathbf{1}_{avg}}{M} = \frac{\mathbf{r}_{avg}}{K}$$

Optimal multiple access policy

- Poisson approximation for R(x) as $K, M \to \infty$
- Finding optimal f_D same as finding optimal $\lambda(x)$ for $\rho(x) = e^{-\mathbf{r}_{avg}(1-x)}$

Intuition behind the main result (Narayanan, Pfister'12)

Convergence condition :
$$\rho(1 - \lambda(y)) > 1 - y$$

$$\rho(1 - \lambda(y)) = 1 - y$$

$$e^{-\mathbf{r}_{avg}\lambda(y)} = e^{\ln(1-y)}$$

$$\Rightarrow -\mathbf{r}_{avg}\lambda(y) = \ln(1-y) = -\sum_{i=1}^{\infty} \frac{y^{i}}{i}$$

$$\Rightarrow \mathbf{r}_{avg}\sum_{i}\lambda_{i}y^{i} = \sum_{i=1}^{\infty} \frac{y^{i}}{i}$$

Intuition behind the main result (Narayanan, Pfister'12)

Convergence condition :
$$\rho(1 - \lambda(y)) > 1 - y$$

$$\rho(1 - \lambda(y)) = 1 - y$$

$$e^{-\mathbf{r}_{avg}\lambda(y)} = e^{\ln(1-y)}$$

$$\Rightarrow -\mathbf{r}_{avg}\lambda(y) = \ln(1-y) = -\sum_{i=1}^{\infty} \frac{y^{i}}{i}$$

$$\Rightarrow \mathbf{r}_{avg}\sum_{i}\lambda_{i}y^{i} = \sum_{i=1}^{\infty} \frac{y^{i}}{i}$$

$$\mathbf{r}_{avg}\lambda_{i} = \frac{1}{i}$$

$$\sum_{i}\lambda_{i} = 1 \Rightarrow \mathbf{r}_{avg} = \sum_{i}\frac{1}{i}, \lambda_{i} = \frac{1/i}{\sum_{i}1/i} \Rightarrow \mathbf{L}_{i} = \frac{1}{i(i-1)}, i \ge 2$$

Graphical interpretation - EXIT chart

• For coordinated transmission, clearly $\eta = 1$,

- For coordinated transmission, clearly $\eta=1,$
- ALOHA provides $\eta\approx 0.37$

- For coordinated transmission, clearly $\eta=1,$
- ALOHA provides $\eta\approx 0.37$
- But, even for uncoordinated transmission, $\eta \to 1$ as $K \to \infty$

- For coordinated transmission, clearly $\eta=1,$
- ALOHA provides $\eta\approx 0.37$
- But, even for uncoordinated transmission, $\eta \rightarrow 1$ as $K \rightarrow \infty$

Optimal distribution is soliton: $f_D[i] = rac{1}{i(i-1)}$									
Ν	lo. of times	1	2	3	4		M		
F	raction of users	$\frac{1}{M}$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{12}$		$\frac{1}{M(M-1)}$		

- ${\cal M}$ balls thrown into ${\cal N}$ bins uniformly at random
- If every bin has to be non-empty with prob $1-\delta,$ how large should M be ?

Balls in bins

- M balls thrown into N bins uniformly at random
- If every bin has to be non-empty with prob $1-\delta,$ how large should M be ? $\boxed{N\log\frac{N}{\delta}}$
- For the multiple access problem, an empty bin means a wasted time slot
- Note that for the soliton the average number of edges is indeed $N\log N)$

Poisson, soliton pair is optimal for rateless codes

• $\lambda(x) = e^{-\frac{\alpha}{1-\epsilon}(1-x)}$, optimal right degree is soliton: $\rho(x) = -\frac{1}{\alpha}\ln(1-x)$

Degree of nodes	1	2	3	4	 i	 K
Fraction: $f_D[i]$	$\frac{1}{K}$	$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{12}$	 $\frac{1}{i(i-1)}$	 $\frac{1}{K(K-1)}$

Connection with Luby Transform (LT) codes

- For rateless codes $\lambda(x)$ is Poisson and $\rho(x)$ is soliton
- For multiple access $\rho(x)$ is Poisson, optimal $\lambda(x)$ is soliton
- Our result shows that both are optimal pairs

Simulation Results

• Even for K = 10000, efficiency close to 0.8 can be obtained

- Fundamental limits on universal multiple access, i.e. K, ϵ not known
- Uncoordinated multiple access with power constraint and Gaussian noise
 - $\bullet\,$ Power penalty for repeating information $\log n$ times on the average
 - Can we achieve the equal rate point on the MAC region with simple decoding?

Back to theory: from erasures to errors

Finite field with p elements

p is prime

- $\mathbb{F}_p \{0, 1, 2, \dots, p-1\}$
- $a \oplus b = (a+b) \mod p$
- $a \odot b = (ab) \mod p$
- We can $+, \times, \div$, inverses
- W is a (primitive) element such that $1, W, W^2, \ldots, W^{p-1}$ are distinct

Finite field with p elements

p is prime

- $\mathbb{F}_p \{0, 1, 2, \dots, p-1\}$
- $a \oplus b = (a+b) \mod p$
- $a \odot b = (ab) \mod p$
- We can $+, \times, \div$, inverses
- W is a (primitive) element such that $1, W, W^2, \ldots, W^{p-1}$ are distinct

Example \mathbb{F}_5

- W = 2
- $W^0 = 1, W^1 = 2, W^2 = 4, W^3 = 3$

Finite field with p elements

p is prime

- $\mathbb{F}_p \{0, 1, 2, \dots, p-1\}$
- $a \oplus b = (a+b) \mod p$
- $a \odot b = (ab) \mod p$
- We can $+, \times, \div$, inverses
- W is a (primitive) element such that $1, W, W^2, \ldots, W^{p-1}$ are distinct

Example \mathbb{F}_5

• W = 2

•
$$W^0 = 1, W^1 = 2, W^2 = 4, W^3 = 3$$

p need not be prime

- Everything can be extended to finite fields with $q = 2^r$ elements
- May be extended to integers not sure

p-symmetric channel and error correction

Error correction coding

- Another simple channel model which has been extensively considered
- Has been the canonical model for algebraic coding theorists

Generalized LDPC code and error channels

- GLDPC introduced by Tanner in 1981
- Each check is a (\tilde{n}, \tilde{k}) , *t*-error correcting code
- If there are $\leq t$ errors in a check, it can be recovered
- For now, assume no miscorrections

Peeling process is same for erasure and error channels

- Assume 1-error correcting check code and no miscorrections
- One-to-one correspondence between messages passed DE can be used
- Not optimal for the error channel but it is not bad at high rates
- Spatially coupled versions are optimal at high rates (Jian, Pfister and N) 47/90

Erasures to errors - tensoring and peeling

- W is a primitive element in the field
- Each check is a 1-error correcting code
- If there is exactly one error in a check, it can be recovered

Product code

- Special case of generalized LDPC code
- Let component code ${\cal C}$ be an $(\tilde{n}, \tilde{k}, \tilde{d}_{\min})$ linear code
- Well-known that ${\cal P}$ is an $({ ilde n}^2,{ ilde k}^2,{ ilde d}^2_{\min})$ linear code

Product code

- Special case of generalized LDPC code
- Let component code ${\cal C}$ be an $(\tilde{n}, \tilde{k}, \tilde{d}_{\min})$ linear code
- Well-known that ${\cal P}$ is an $(\tilde{n}^2, \tilde{k}^2, \tilde{d}^2_{\min})$ linear code

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Received block

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Row decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Row decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Column decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Column decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Decoding successful

Peeling decoding of product codes

- Hard-decision "cascade decoding" by Abramson in 1968
- Identical to a peeling decoder
- Example: t = 2-error-correcting codes, bounded distance decoding

Or trapped in a stopping set

Density Evolution(DE) for Product Codes -Justesen et al

What is different about DE?

- Graph is highly structured
- Neighborhood is not tree-like
- Remarkably, randomness in the errors suffices!

Density Evolution(DE) for Product Codes -Justesen et al

What is different about DE?

- Graph is highly structured
- Neighborhood is not tree-like
- Remarkably, randomness in the errors suffices!

Assumptions

- Errors are randomly distributed in rows and columns
- # errors in each row/col ~ Poisson(M))

Density Evolution(DE) for Product Codes -Justesen et al

What is different about DE?

- Graph is highly structured
- Neighborhood is not tree-like
- Remarkably, randomness in the errors suffices!

Assumptions

- Errors are randomly distributed in rows and columns
- # errors in each row/col ~ Poisson(M))

row codes

column codes

Ŧ

Main Idea

- Removal of corrected vertices (degree≤ t) from row codes ⇔ removal of random edges from column codes uniformly at random
- # of errors in row/column changes after each iter
- Track the distribution

DE continued

Tail of the Poisson distribution

$$\pi_t(m) = \sum_{j \ge t} \mathrm{e}^{-m} m^j / j!$$

Effect of first step of decoding

If the # errors is Poisson with mean M, Mean # of errors after decoding is

$$m(1) = \sum_{j \ge t+1} j e^{-M} M^j / j! = M \pi_t(M)$$

Evolution of the degree distribution - jth iteration

Recursion

- m(0) = M
- $m(1) = M\pi_t(M)$
- $m(j) = M\pi_t(m(j-1))$

Reduction in the parameter

- Average no. of errors in each row (column) = $m(j)\pi_t(m(j))$
- Decoding of rows reduces the parameter by $\frac{m(j)\pi_t(m(j))}{m(j-1)\pi_t(m(j-1))} = \frac{M\pi(m(j))}{m(j-1)}$
- New parameter is $m(j+1) = M\pi(m(j))$

Threshold

In the limit of large \tilde{n} (length in each dimension), a $t\text{-}{\rm error}$ correcting product code can correct $\tilde{n}M$ errors when

$$M < \min_{m} \left\{ \frac{m}{\pi_t(m)} \right\}$$

Thresholds for asymptotically large field size

	$\frac{\texttt{Threshold}}{\# of parity symbols}$								
		d = 2	d = 3	d = 4	d = 5	d = 6	d = 7	d = 8	
	t = 1	4.0	2.4436	2.5897	2.8499	3.1393	3.4378	3.7383	
	t = 2	2.3874	2.5759	2.9993	3.4549	3.9153	4.3736	4.8278	
	t = 3	2.3304	2.7593	3.3133	3.8817	4.4483	5.0094	5.5641	
	t = 4	2.3532	2.9125	3.5556	4.2043	4.8468	5.4802	6.1033	
Notice that $L, K = O\left(N^{\frac{1-d}{d}}\right)$									

Syndrome source coding

- $H\underline{x} = 0$
- Receive $\underline{r} = \underline{x} \oplus \underline{e}$
- $H\underline{r} = H\underline{e} = \underline{y}$
- Recover \underline{x} and sparse \underline{e}

Source nodes

- $H\underline{s} = \underline{y}$
- Set $\underline{r} = 0$ (Let a genie add \underline{x} to \underline{r})
- \underline{y} is given to the decoder
- Recover sparse <u>s</u>

Application 2

Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

x[n]: Time domain signal of length N whose spectrum is K-sparse

$$x[n] \xrightarrow{\mathsf{DFT}} X[k] \xrightarrow{(K-\operatorname{sparse})}$$

Compute the locations and values of the K non-zero coefficients w.h.p

Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

 $\boldsymbol{x}[\boldsymbol{n}]$: Time domain signal of length N whose spectrum is K-sparse

 $x[n] \xrightarrow{\mathsf{DFT}} X[k] \xrightarrow{(K-\operatorname{sparse})} x[k]$

Compute the locations and values of the K non-zero coefficients w.h.p

Fast Fourier Transform (FFT)

- Sample complexity: N samples
- Computational complexity: $O(N \log N)$

We want sublinear sample and computational complexity

Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

 $\boldsymbol{x}[\boldsymbol{n}]$: Time domain signal of length N whose spectrum is K-sparse

$$x[n] \xrightarrow{\mathsf{DFT}} X[k] \xrightarrow{(K-\operatorname{sparse})} x[k]$$

Compute the locations and values of the K non-zero coefficients w.h.p

Related work

- Spectral estimation Prony's method
- More recently Pawar and Ramchandran'13, Hassanieh, Indyk, Katabi'12

SFFT - A Sparse Graph Based Approach

Main Idea - Pawar and Ramchandran 2013

- Sub-sampling in time corresponds to aliasing in frequency
- Aliased coefficients ⇔ parity check constraints of GLDPC codes
- CRT guided sub-sampling induces a code good for Peeling decoder
- Problem is identical to syndrome source coding

SFFT - A Sparse Graph Based Approach

Main Idea - Pawar and Ramchandran 2013

- Sub-sampling in time corresponds to aliasing in frequency
- Aliased coefficients ⇔ parity check constraints of GLDPC codes
- CRT guided sub-sampling induces a code good for Peeling decoder
- Problem is identical to syndrome source coding

FFAST for Computing the DFT - Pawar and Ramchandran 2013

- Sampling complexity: M = O(K) time domain samples
- Computational complexity: $O(K \log K)$

Subsampling and Aliasing - A Quick Review

Subsampling results in aliasing

• Let
$$x[n] \xrightarrow{N-DFT} X[k], \quad k, n = 0, 1, \dots, N-1$$

• Let
$$x_s[n] = x[mL], m = 0, 1, \dots, N/L = M$$
 be a sub-sampled signal

• Let
$$x_s[m] \xrightarrow{M-DFT} X_s[l]$$
 be the DFT of the sub-sampled signal

•
$$\left| X_s[l] = M \sum_{p=0}^{L-1} X[l+pM] \right|$$

Aliasing and Sparse Graph Codes

FFAST Algorithm Example

62 / 90

Singleton Detection

Singleton condition for a checknode

- Let $i = \frac{-N}{j2\pi} \log(\frac{\bar{X}_s[l]}{X_s[l]})$. If $0 \le i \le N 1$, then checknode l is a Singleton.
- Pos(l) = i is the only variable node participating and $X_s[l]$ is its value.

FFAST Decoder

Peeling decoder

- 1 non-zero value among the neighbors of any right node can be recovered
- Iteratively errors can be corrected and analyzed for random non-zero coeffs

FFAST Decoder Example

Example 1

Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7

FFAST Decoder Example

Example 1

Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7

65 / 90

FFAST Decoder Example

Example 1

Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7

65 / 90

Generalization

Reed Solomon component codes

- $(X_s[l_1], \tilde{X}_s[l_1])$ correspond to 2 syndromes of a 1-error correcting RS code
- RS is over the complex field, no miscorrection

Product codes and FFAST (d = 2)

- X: K-sparse spectrum of length $N = P_1P_2$ (P_1 and P_2 are co-prime)
- X': $P_1 imes P_2$ matrix formed by rearranging X according to mapping $\mathcal M$

$$\begin{aligned} X_s[l_1] &= \sum_{i=0}^{P_2-1} X[l_1+iP_1], \quad 0 \le l_1 \le P_2-1 \\ Z_s[l_2] &= \sum_{i=0}^{P_1-1} X[l_2+iP_2], \quad 0 \le l_2 \le P_1-1 \end{aligned}$$

Mapping

The mapping from X(r) to X'(i, j) is given by

$$(i, j) = \mathcal{M}(r) \equiv (r \mod P_2, r \mod P_1).$$

Note: CRT ensures that \mathcal{M} is bijective

	$\bigcup_{s=0}^{Z_s[0]}$	$\bigcup_{s=1}^{Z_s[1]}$	$Z_s[2]$ \downarrow	${\stackrel{Z_s[3]}{\downarrow}}$
$X_s[0] \longrightarrow$	X[0]	X[5]	X[10]	X[15]
$X_s[1] \longrightarrow$	X[16]	X[1]	X[6]	X[11]
$X_s[2] \longrightarrow$	X[12]	X[17]	X[2]	X[7]
$X_s[3] \longrightarrow$	X[8]	X[13]	X[18]	X[3]
$X_s[4] \longrightarrow$	X[4]	X[9]	X[14]	X[19]

Product codes and FFAST $(d \ge 3)$

 $N = P_1 \times P_2 \times \ldots \times P_d$

 $(i_1, i_2, \ldots, i_d) = \mathcal{M}(r) \equiv (r \mod f_1, r \mod f_2, \ldots, r \mod f_d).$

Connections between FFAST and Product Codes

Product codes d-dimensional product code t-error correcting RS component codes Error locations Iterative decoding

Thresholds

Theorem 1

Less sparse case: In the limit of large P, the FFAST algorithm with d branches and 2t stages can recover the FFT coefficients w.h.p if $K < \frac{2dt}{cd+1}$.

 $c_{d,t} = \min_m \{m/\pi^{d-1}(m)\}$

$Threshold = \frac{\# \ of \ measurements}{recoverable \ sparsity} = \frac{2dt}{c_{d,t}}$								
	d=2	d = 3	d = 4	d = 5	d = 6	d = 7	d = 8	
t = 1	4.0	2.4436	2.5897	2.8499	3.1393	3.4378	3.7383	
t = 2	2.3874	2.5759	2.9993	3.4549	3.9153	4.3736	4.8278	
t = 3	2.3304	2.7593	3.3133	3.8817	4.4483	5.0094	5.5641	
t = 4	2.3532	2.9125	3.5556	4.2043	4.8468	5.4802	6.1033	
ptice that $L, K = O\left(N^{\frac{1-d}{d}}\right)$								

Interference-tolerant A/D Converter

Open problems

- If we use MAP decoding, is the subsampling procedure optimal?
- What happens when $N = 2^i$?
- Bursty case? Can we have threshold theorems?
- Using this idea in actual applications

- Syndrome : Linear combination of \underline{h}_i s, i.e., $y = e_i \underline{h}_i \oplus e_j \underline{h}_j \oplus e_t \underline{h}_t$
- Decoding : Find min weight \underline{e} : $\underline{y} = e_i \underline{h}_i \oplus e_j \underline{h}_j \oplus e_t \underline{h}_t$

- Syndrome : Linear combination of \underline{h}_i s, i.e., $y = e_i \underline{h}_i \oplus e_j \underline{h}_i \oplus e_t \underline{h}_t$
- Decoding : Find min weight \underline{e} : $y = e_i \underline{h}_i \oplus e_j \underline{h}_i \oplus e_t \underline{h}_t$

Coding theory deals with the construction of \mathbf{H} and efficient decoding algorithms, i.e., given a linear combination of the columns of \mathbf{H} , it develops tools to determine a sparse \underline{e}

Syndrome source coding

Compression of a sparse binary source

- Compressed version is the syndrome y
- Reconstruction is the same as decoding
- · Similar to the canonical sparse recovery problem

- Idea of a check node or a measurement node which is a function of some symbols
- Singleton detection be able to identify one non-zero symbol
- Peeling if we know some symbols, be able to remove and adjust measurement

Application 3
Compressed sensing

Classical compressed sensing

- \underline{x} is a K-sparse vector over $\mathbb R$ or $\mathbb C$
- We 'compress' \underline{x} by storing only $\underline{y} = \mathbf{A} \ \underline{x}$
- Reconstruction Solve $\underline{\hat{x}} = \arg \min ||\underline{z}||_0 : \underline{y} = \mathbf{A}\underline{z}$
- CS Solve $\underline{\hat{x}} = \arg \min ||\underline{z}||_1 : y = \mathbf{A}\underline{z}$

Compressed sensing

Classical compressed sensing

- \underline{x} is a K-sparse vector over $\mathbb R$ or $\mathbb C$
- We 'compress' \underline{x} by storing only $\underline{y} = \mathbf{A} \ \underline{x}$
- Reconstruction Solve $\underline{\hat{x}} = \arg \min ||\underline{z}||_0 : y = \mathbf{A}\underline{z}$
- CS Solve $\underline{\hat{x}} = \arg \min ||\underline{z}||_1 : y = \mathbf{A}\underline{z}$

Coding theoretic approach - syndrome source coding over complex numbers

• Sensing matrix $\mathbf{A} \Leftrightarrow \mathsf{Parity}$ check matrix \mathbf{H}

Data stream computing

Problem - consider a router in a large network

- Count the number of packets from source *i* to destination *j*, say x_{ij} •
- Data vector is huge, $n = 2^{64}$ •
- Heavy hitters only a few of them are large •

Incremental updates

Sketch y supports incremental updates to x as the sketching procedure is linear. $x + \Delta_i \rightarrow y + A\Delta_i$ (adding *i*th column vector of A to existing sketch)

Compressed Sensing (Li, Ramchandran '14)

Sketching matrix
$$(A_{m \times n})$$

$$A_{m \times n} = \begin{array}{c} \mathbf{H}_{\frac{m}{2} \times \mathbf{n}} & \otimes & \mathbf{B}_{2 \times \mathbf{n}} \\ (d-left \ regular \ Graph) & (Singleton \ identifier) \end{array}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & W & W^2 & \cdots & W^{n-1} \end{bmatrix} \quad W = e^{j\frac{2\pi}{n}}$$

Main results for compressed sensing

Noiseless case

- Samples : 2K versus Info-theoretic limit K + 1
- Computations: O(K) versus $O(K^2)$
- If $K = O(n^{\delta})$, small price to pay in terms of samples

Noisy case

- Sample: $O(k \log^{1.3^{\cdot}} n)$ vs limit: $O(k \log(n/k))$ necessary and sufficient
- Computations: $O(k \log^{1.3^{\circ}} n)$

Main results for compressed sensing

Noiseless case

- Samples : 2K versus Info-theoretic limit K+1
- Computations: O(K) versus $O(K^2)$
- If $K = O(n^{\delta})$, small price to pay in terms of samples

Noisy case

- Sample: $O(k \log^{1.3^{\cdot}} n)$ vs limit: $O(k \log(n/k))$ necessary and sufficient
- Computations: $O(k \log^{1.3^{\circ}} n)$

Vem, Thenkarai Janakiraman, N. ITW'16

- Sample: $O(k \log^{1.3^{\circ}}(n/k))$ vs limit: $O(k \log(n/k))$ necessary and sufficient
- Computations: $O(k \log^{1.3^{\circ}}(n/k))$

Group Testing (Lee, Pedarsani, Ramchandran '15)

- II World War detect all soldiers with syphilis
- Tests performed on efficiently pooled groups of items
- Least no. of tests (m) to identify k defective items from n items

Example

$$Y_{m \times 1} = A \odot X = \begin{bmatrix} \langle a_1, X \rangle \\ \langle a_2, X \rangle \\ \vdots \\ \langle a_m, X \rangle \end{bmatrix} \quad \langle a_i, X \rangle = \bigvee_{j=1}^N a_{ij} X_j$$

Singleton detection

$$\begin{bmatrix} H_1\\ H_1\\ \hline \\ H_1\\ \hline \\ \end{bmatrix} = \begin{bmatrix} \mathbf{b_1}\\ \mathbf{b_1}\\ \hline \\ \mathbf{b_2}\\ \mathbf{b_2}\\ \mathbf{b_3}\\ \cdots \\ \mathbf{b_{n-1}} \end{bmatrix} = \begin{bmatrix} \mathbf{b_{n-1}}\\ \mathbf{b_{n-1}}\\ \mathbf{b_{n-1}}\\ \hline \\ \end{bmatrix} = \begin{bmatrix} \mathbf{b_{n-1}}\\ \mathbf{b_{n-1}}\\ \mathbf{b_{n-1}}\\ - \\ \mathbf{b_{n$$

Note: If a checknode is a singleton, with *i*th bit-node participating, then the observation vector is the *i*th column of A.

- Singleton if the weight of first two observation vectors together is L.
- Position of the defective item is decimal value of the 1st observation vector.

Measurement matrix $(A_{m \times n})$

 $A_{m \times n} = \underset{(d-left \ regular \ Graph)}{\mathbf{G}_{\frac{m}{6} \times \mathbf{n}}} \underset{(singleton \ identifier)}{\otimes} \mathbf{H}_{\mathbf{6} \times \mathbf{n}}$

Let, $\mathbf{b_i}$ denote the *L*-bits binary representation of the integer i - 1, $L = \lceil \log_2 n \rceil$.

$$H = \begin{bmatrix} \underline{b_1} & \underline{b_2} & \underline{b_3} & \cdots & \underline{b_{n-1}} \\ \overline{b_1} & \overline{b_2} & \overline{b_3} & \cdots & \overline{b_{n-1}} \\ \underline{b_{i_1}} & \underline{b_{i_2}} & \underline{b_{i_3}} & \cdots & \underline{b_{i_{n-1}}} \\ \overline{b_{i_1}} & \underline{b_{j_2}} & \underline{b_{j_3}} & \cdots & \underline{b_{j_{n-1}}} \\ \underline{b_{j_1}} & \underline{b_{j_2}} & \underline{b_{j_3}} & \cdots & \underline{b_{j_{n-1}}} \\ \overline{b_{i_n}} & \overline{b_{i_2}} & \overline{b_{i_2}} & \cdots & \overline{b_{i_{n-1}}} \end{bmatrix}$$

 $s_1=(i_1,i_2,\cdots,i_{n-1})$ and $s_2=(j_1,j_2,\cdots,j_{n-1})$ are permutations

Decoding procedure

- Identify and decodes singletons using weights of the observation vector
- Identify and resolve doubletons by guessing to satisfy the first pair of observation vectors and checking if the guess satisfies the other two pairs of observations

Main results for group testing

Non-adaptive Group Testing (Noiseless and Noisy)

- Recovers $(1-\epsilon)k$ items with h.p.
- Samples: $m = O(k \log_2 n)$ versus limit: $\Theta(k \log(\frac{n}{k}))$
- Computational complexity: $O(k \log n)$ (order optimal)

Compressive Phase Retrieval

 $X \in \mathbb{C}^n$ (K-sparse)

Compressive Phase Retrieval

Conclusion

- Review of a simple message passing decoder called the peeling decoder
- Density evolution as a tool to analyze its asymptotic performance
- Applications
 - Massive uncoordinated multiple access
 - Sparse Fourier transform computation
 - Compressed sensing type sparse recovery problems

Questions?

Thank you!