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Introduction

Message passing algorithms

• Remarkably successful in coding theory

• Used to design capacity-achieving codes/decoders for a variety of channels

• Tools have been developed to analyze their performance
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Two main goals

Goal 1

Review some developments in modern coding theory and show how to analyze the
performance of a simple peeling decoder for the BEC and p-ary symmetric
channels.

Goal 2

Show that the following problems have the same structure as channel coding
problems and show how to use the peeling decoder to solve them.

Problems

• Uncoordinated massive multiple access

• Sparse Fourier transform (SFT) computation

• Sparse Walsh-Hadamard transform computation

• Compressed sensing

Data stream computing
Group testing
Compressive phase retrieval
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Remembering Sir David MacKay

David Mackay’s rediscovery of LDPC codes and his very interesting book on
Information Theory has undoubtedly had a big influence on the field.
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Binary erasure channel (BEC) and erasure correction

Encoder
²

²

1¡ ²

1¡ ²

0

1

0

1

E

BEC(²) channel

Decoder
m1, . . . ,mk x1, . . . , xn

xi ∈ {0, 1}
r1, . . . , rn

ri ∈ {0, 1}
m̂1, . . . , m̂k

Channel coding problem

• Transmit a message m = [m1, . . . ,mk]T through a binary erasure channel

• Encode the k-bit message m into a n-bit codeword x

• Redundancy is measured in terms of rate of the code R = k/n
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Capacity achieving sequence of codes

• Capacity C(ε) = 1− ε
• A sequence of codes {Cn}
• Probability of erasure Pne
• Rate Rn

• Capacity achieving if Pne → 0 as n→∞ while Rn → C

• Find efficient encoders/decoders in terms encoding and decoding complexities

Significance of the erasure channel

• Introduced by Elias in 1954 as a toy example

• Has become the canonical model for coding theorists to gain insight

6 / 90



Binary erasure channel (BEC) and erasure correction

Encoder
²

²

1¡ ²

1¡ ²

0

1

0

1

E

BEC(²) channel

Decoder
m1, . . . ,mk x1, . . . , xn

xi ∈ {0, 1}
r1, . . . , rn

ri ∈ {0, 1}
m̂1, . . . , m̂k

Capacity achieving sequence of codes

• Capacity C(ε) = 1− ε

• A sequence of codes {Cn}
• Probability of erasure Pne
• Rate Rn

• Capacity achieving if Pne → 0 as n→∞ while Rn → C

• Find efficient encoders/decoders in terms encoding and decoding complexities

Significance of the erasure channel

• Introduced by Elias in 1954 as a toy example

• Has become the canonical model for coding theorists to gain insight

6 / 90



Binary erasure channel (BEC) and erasure correction

Encoder
²

²

1¡ ²

1¡ ²

0

1

0

1

E

BEC(²) channel

Decoder
m1, . . . ,mk x1, . . . , xn

xi ∈ {0, 1}
r1, . . . , rn

ri ∈ {0, 1}
m̂1, . . . , m̂k

Capacity achieving sequence of codes

• Capacity C(ε) = 1− ε
• A sequence of codes {Cn}
• Probability of erasure Pne
• Rate Rn

• Capacity achieving if Pne → 0 as n→∞ while Rn → C

• Find efficient encoders/decoders in terms encoding and decoding complexities

Significance of the erasure channel

• Introduced by Elias in 1954 as a toy example

• Has become the canonical model for coding theorists to gain insight

6 / 90



Binary erasure channel (BEC) and erasure correction

Encoder
²

²

1¡ ²

1¡ ²

0

1

0

1

E

BEC(²) channel

Decoder
m1, . . . ,mk x1, . . . , xn

xi ∈ {0, 1}
r1, . . . , rn

ri ∈ {0, 1}
m̂1, . . . , m̂k

Capacity achieving sequence of codes

• Capacity C(ε) = 1− ε
• A sequence of codes {Cn}
• Probability of erasure Pne
• Rate Rn

• Capacity achieving if Pne → 0 as n→∞ while Rn → C

• Find efficient encoders/decoders in terms encoding and decoding complexities

Significance of the erasure channel

• Introduced by Elias in 1954 as a toy example

• Has become the canonical model for coding theorists to gain insight

6 / 90



Binary erasure channel (BEC) and erasure correction

Encoder
²

²

1¡ ²

1¡ ²

0

1

0

1

E

BEC(²) channel

Decoder
m1, . . . ,mk x1, . . . , xn

xi ∈ {0, 1}
r1, . . . , rn

ri ∈ {0, 1}
m̂1, . . . , m̂k

Capacity achieving sequence of codes

• Capacity C(ε) = 1− ε
• A sequence of codes {Cn}
• Probability of erasure Pne
• Rate Rn

• Capacity achieving if Pne → 0 as n→∞ while Rn → C

• Find efficient encoders/decoders in terms encoding and decoding complexities

Significance of the erasure channel

• Introduced by Elias in 1954 as a toy example

• Has become the canonical model for coding theorists to gain insight
6 / 90



(n, k) Binary linear block codes - basics

G is a n× k generator matrix


g1,1 · · · gk,l

...
. . .

...
...

. . .
...

gn,1 gk,l


m1

...
mk

 =


x1
...
...
xn



Example - (6,3) code
1 0 0
0 1 0
0 0 1
1 0 1
1 1 0
0 1 1


1

1
0

 =


1
1
0
1
0
1



Parity check matrix - H is a (n− k)× n matrix s.t. HG = 0⇒ Hx = 0

H =

1 0 1 1 0 0
1 1 0 0 1 0
0 0 1 0 0 1




1
1
0
1
0
1

 =

0
0
0
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Tanner graph representation of codes

x1; x2; x3; x4 ; x5; x6

H =

24 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

35
x1 © x3 © x4 = 0

x1 © x2 © x5 = 0

x2 © x3 © x6 = 0

x1

x2

x3

x4

x5

x6

Variable nodes

Check nodes

• Gallager’63, Tanner’81

• Parity check matrix implies that Hx = 0

• Code constraints can be specified in terms of a bipartite (Tanner) graph
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Peeling decoder for the BEC

x1; x2; x3; x4 ; x5; x6

H =

24 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

35
x1 © x3 © x4 = 0

x1 © x2 © x5 = 0

x2 © x3 © x6 = 0

x1

x2

x3

x4

x5

x6

Tanner Graph

• Zyablov and Pinsker’74, Luby et al ’95

• Remove edges incident on known variable nodes and adjust check node values

• If there is a check node with a single edge, it can be recovered
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Peeling Step 4

• Zyablov and Pinsker’74, Luby et al ’95

• Remove edges incident on known variable nodes and adjust check node values
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Message passing decoder for the BEC

x1

x2

x3

x4

x5

x6

Tanner Graph

1

E

E

1

0

E

Variable nodes

Check nodes

• Pass messages between variable nodes and check nodes along the edges

• Messages ∈ {value of var node (NE), erasure (E)}
• Var-to-check node message is NE if at least one incoming message is NE

• Check-to-var node message is NE if all other incoming messages are NE
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Message passing decoder for the BEC
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Peeling decoder is a greedy decoder

H =


x1 x2 x3 x4 x5 x6
1 1 1 1 0 0
1 0 0 0 1 0
0 1 1 0 0 1


x1 ⊕ x1 ⊕ x3 ⊕ x4 = 0

x1 ⊕ x2 ⊕ x5 = 0

x2 ⊕ x3 ⊕ x6 = 0

E

E

1

0

Variable nodes

Check nodes

E

1

Linearly independent set of equations

x1 ⊕ x1 ⊕ x3 = x4

x1 ⊕ x2 = x5

x2 ⊕ x3 = x6
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Degree distributions

E

E
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0
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Check nodes
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• VN d.d. from node perspective - L(x) =
∑
i Lix

i = 3
6x+ 2

6x
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6x
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i λix

i−1 = 3
10 + 4
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10x

2

• CN d.d. from node perspective - R(x) =
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i ρix

i−1 = 6
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LDPC code ensemble

Permutation

LDPC(n, λ, ρ) ensemble

• Ensemble of codes obtained by using different permutations π

• Assume there is only one edge between every var node and check node

• For every n, we get an ensemble of codes with the same (λ, ρ)

• Low density parity check (LDPC) ensemble if graph is of low density
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Analysis of the message passing decoder

• If we pick a code uniformly at random from the LDPC(n, λ, ρ) ensemble and
use it over a BEC(ε) with l iterations of message passing decoding, what will
be the probability of erasure Pne in the limit l, n→∞ ?

Analyze the average prob. of erasure over the ensemble
For almost all realizations Pn

e concentrates around the average

Relevant literature

• Papers by Luby, Mitzenmacher, Shokrollahi, Spielman, Stemann 97-’02

• Explained in Modern coding theory by Richardson and Urbanke

• Henry Pfister’s course notes on his webpage
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Analysis of the message passing decoder

Computation graph

Computation graph Cl(x1, λ, ρ) of bit x1 of depth l (l-iterations) is the
neighborhood graph of node x1 of radius l.

Consider the example
Cl=1(λ(x) = x, ρ(x) = x2)

1−O(1/n) O(1/n) O(1/n2)

Computation tree

For fixed (lmax, rmax), in the limit of large block lengths a computation graph of
depth-l looks like a tree with high probability
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Analysis of the message passing decoder

Computation Tree Ensemble-Tl(λ, ρ)

Ensemble of bipartite trees of depth l rooted in a variable node (VN) where

• Root node has i children(CN’s) with probability Li

• Each VN has i children(CN’s) with probability λi

• Each CN has i children(VN’s) with probability ρi

Example: Cl=1(λ(x) = x, ρ(x) = x2)
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Density evolution

xl = ε
∑
i λiy

i−1
l = ελ(yl)

yl = 1− ρ(1− xl−1)

xl−1Depth-1

...... y1 =
∑
i ρi
(
1− (1− x0)i−1

)
= 1−∑i ρi(1− x0)i−1

= 1− ρ(1− x0)

x0 = ε

xch = ε

Depth-l

Recall

• ρ(x) =
∑
i ρix

i−1

•
∑
i ρi = 1

• λ(x) =
∑
i λix

i−1

•
∑
i λi = 1

Recursion

x0 = ε
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Analysis of the message passing decoder

λ(x) = x2, ρ(x) = ρ4x
3 + ρ5x

4

x1 = ε(y
(3)
1 )2

y
(3)
1 = 1− (1− ε)3

x0 = ε

P (T ) = ρ24
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1 = 1− (1− ε)4
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P (T ) = ρ25

ELDPC(λ,ρ)[x1] =
∑

T∈T1(λ,ρ)

P (T ) ∗ x1(T, ε)

= ε(ρ4y
(3)
1 + ρ5y

(4)
1 )2

= ε(1− ρ4(1− ε)3 − ρ5(1− ε)4)2

= ελ (1− ρ(1− ε))
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Threshold

Convergence condition

xl = ελ(1− ρ(1− xl−1)) = f(ε, xl−1)

xl converges to 0 if f(ε, x) < x, x ∈ (0, ε]
There is a fixed point if f(ε, x) = x, for some x ∈ (0, ε]

The threshold εBP(λ, ρ) is defined as

εBP(λ, ρ) = sup{ε ∈ [0, 1] : xl → 0 as l→∞}
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Exit charts - Ashikmin, Kramer, ten Brink’04

Node functions

• Var node function: vε(x) = ελ(x)

• Check node function: c(x) = 1− ρ(1− x)
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λ(x) = x2, ρ(x) = x5
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Optimality of EXIT chart matching

• Var node function: vε(x) = ελ(x)

• Check node function: c(x) = 1− ρ(1− x)
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λ
(N)
α (x) = 1− (1− x)α|N

ρ(x) = x10, α = 0.1, N = 50.

εSh = 1− r = 0.372

v−1
ε (x), ε = 0.368
c(x)
v−1
ε (x), ε = 0.3
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Summary

• Understand what degree distributions (λ(x), ρ(x)) mean

• Given a (λ, ρ) and ε, what will be the Pne as l, n→∞ ?

• Can you compute the threshold?

• Is a (λ(x), ρ(x)) pair optimal?
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Application 1
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The changing mobile landscape

• 5G will not only be “4G but faster” but will support new models such as IoT

• Current wireless - a few devices with sustained connectivity

• Future wireless - massive no. of devices requesting sporadic connectivity

R1: today’s systems 
operating region
R2: high-speed versions of 
today’s systems
R3: massive access 
R4: ultra-reliable 
communication

data 
rate

≥99%R2

# devices

≥99%

≥99.999%R4 ≥90-99%R3

R1

1 10000100010010
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The changing mobile landscape

• Current wireless - a few devices with sustained connectivity

• Future wireless - many uncoordinated devices requesting sporadic connectivity
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A possible MAC frame structure

• Total of Q users out of which K are active

• Q is very large and K is a small fraction of Q

Beacon
Estimate

No. of  users Slot 1 Slot M

Frame length M

• Beacon is used to obtain coarse synchronization

• Each user transmits a signature sequence

• BS estimates the no. of users (K) (Chen, Guo ’14, Calderbank)

• Picks an M and broadcasts it
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System under consideration

• Wireless network with K distributed users (no coordination)

• Each user has one packet of info to transmit to a central receiver

• Total time is split into M slots (packet duration)

Some policy used to decide if they transmit in j-th slot or not
Receiver knows the set of users transmitting in the j-th slot

…
. 

…
. 

…
. 

Users Time slots 
1 

2 

3 

K 

1 

2 

3 

K 

M 

Receiver 
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Random access paradigm

• k-th user:
Generates a random variable Dk ∈ {1, . . . ,M}
Generating PMF is fD, i.e., Pr(Dk = i) = fD[i]
Transmits during Dk time slots drawn uniformly from {1, . . . ,M}

Users Time slots 

1 

2 

3 

4 

1 

2 

3 

4 

5 

• In this example, D3 = 3 and user 3 transmits in slots {1, 3, 5}
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Iterative interference cancelation

• If exactly one user transmits per slot, then packet is decoded w.h.p.

• If more than one user transmits per slot, then collision

Rx subtracts previously decoded packets from collided packets

If Rx can subtract all but one, remaining packet is decoded w.h.p.

Otherwise, the received packet is saved for future processing

Once all K packets recovered, an ACK terminates the transmission

Similar to interference cancellation in multi-user detection

Users Time slots

1

2

3

4

1

2

3

4

5

No collision

Collisionx2 + x3x2 + x3

x1 + x4x1 + x4

x2 + x3 + x4x2 + x3 + x4

x3 + x4x3 + x4

x2x2
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Performance measure - Efficiency

• Suppose M time slots needed to successfully transmit all K packets

• Then, the efficiency of the system is said to be

η = K/M packets/slot
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Graphical representation (Liva 2012)

• Tanner graph representation for the transmission scheme
• Variable nodes ↔ users, Check nodes ↔ received packets
• Message-passing decoder - peeling decoder for the erasure channel

Users Time slots

1

2

3

4

5

v3v3

v4v4

v2v2

v1v1

x3x3

x4x4

x2x2

x1x1

x4x4

Var nodes Check nodes

v3v3

v4v4

v2v2

v1v1

x3x3

x4x4

x2x2

x1x1

x4x4+

+

+

+

+

• Li (Ri) - fraction of left (right) nodes with degree i - notice that Li = fD[i]

• λi (ρi) - fraction of edges connected to left (right) nodes with deg i
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Low density generator matrix (LDGM) codes

+

+

+

+

+

m1

m2

m3

m4

x1

x2

x3

x4

x5

• L(x) = 1
4x+ 1

4x
2 + 1

2x
3

• λ(x) = 1
9 + 2

9x+ 6
9x

2

• R(x) = 1
5x+ 4

5x
2

• ρ(x) = 1
9 + 8

9x

• Rate R =
∫ 1
0
λ(x) dx∫ 1

0
ρ(x) dx

DE for LDPC

x0 = ε

yl = 1− ρ(1− xl−1)

xl = ελ(yl)

xl = ελ(1− ρ(1− xl−1))

DE for LDGM

x0 = 1

yl = 1− ρ(1− xl−1)

xl = λ(yl)

xl = λ(1− ρ(1− xl−1))
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Poisson approximation for check node d.d.

!"

!"

!"

!"

!"

#
$"

#
$"

%"

  

B
ravg

K

 

 
 

 

 
 

  

B
ravg

K

 

 
 

 

 
 

  

Bin K,
ravg

K

 

 
 

 

 
 

Slot transmission probability

User k transmits in slot m with prob. p =
∑∞
i=1 Li

i
M =

lavg
M =

ravg
K

Optimal multiple access policy

• Poisson approximation for R(x) as K,M →∞
• Finding optimal fD - same as finding optimal λ(x) for ρ(x) = e−ravg(1−x)
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Intuition behind the main result (Narayanan,Pfister’12)

Convergence condition : ρ(1− λ(y)) > 1− y

ρ(1− λ(y)) = 1− y
e−ravgλ(y) = eln(1−y)

⇒ −ravgλ(y) = ln(1− y) = −
∞∑
i=1

yi

i

⇒ ravg
∑
i

λiy
i =

∞∑
i=1

yi

i

ravgλi =
1

i∑
i

λi = 1⇒ ravg =
∑
i

1

i
, λi =

1/i∑
i 1/i

⇒ Li =
1

i(i− 1)
, i ≥ 2
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Graphical interpretation - EXIT chart
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Main result

• For coordinated transmission, clearly η = 1,

• ALOHA provides η ≈ 0.37

• But, even for uncoordinated transmission, η → 1 as K →∞

Optimal distribution is soliton: fD[i] = 1
i(i−1)

No. of times 1 2 3 4 . . . M
Fraction of users 1

M
1
2

1
6

1
12 . . . 1

M(M−1)
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Balls in bins

• M balls thrown into N bins uniformly at random

• If every bin has to be non-empty with prob 1− δ, how large should M be ?

N log
N

δ

• For the multiple access problem, an empty bin means a wasted time slot

• Note that for the soliton the average number of edges is indeed N logN)
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Poisson, soliton pair is optimal for rateless codes
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1−ε(1−x)|N
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εSh = 1− r = 0.472

λ−1(x)
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1

K

Info bits Coded bits

• x = λ(1− (1− ε)ρ(1− x))

• λ(x) = e−
α

1−ε (1−x), optimal right degree is soliton: ρ(x) = − 1
α ln(1− x)

Degree of nodes 1 2 3 4 . . . i . . . K
Fraction: fD[i] 1
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1
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Connection with Luby Transform (LT) codes

Info bits Coded bits

+

+

+

+

+
…
.

…
.

݂ ݅ ൌ
1

݅ ݅ െ 1

Poisson

Users Time slots

+

+

+

+

+

…
.

…
.

݂ ݅ ൌ
1

݅ ݅ െ 1

Poisson

• For rateless codes λ(x) is Poisson and ρ(x) is soliton
• For multiple access ρ(x) is Poisson, optimal λ(x) is soliton
• Our result shows that both are optimal pairs
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Simulation Results
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• Even for K = 10000, efficiency close to 0.8 can be obtained
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Some open problems

• Fundamental limits on universal multiple access, i.e. K, ε not known

• Uncoordinated multiple access with power constraint and Gaussian noise

Power penalty for repeating information logn times on the average
Can we achieve the equal rate point on the MAC region with simple decoding?

42 / 90



Back to theory: from erasures to errors
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Finite field with p elements

p is prime

• Fp − {0, 1, 2, . . . , p− 1}
• a⊕ b = (a+ b) mod p

• a� b = (ab) mod p

• We can +,×,÷, inverses

• W is a (primitive) element such that 1,W,W 2, . . . ,W p−1 are distinct

Example F5

• W = 2

• W 0 = 1,W 1 = 2,W 2 = 4,W 3 = 3

p need not be prime

• Everything can be extended to finite fields with q = 2r elements

• May be extended to integers - not sure
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p-symmetric channel and error correction

Encoder
²

²

1¡ ²

1¡ ²

0

1

0

1

BSC(²) channel

²0

1¡ ²
0

p¡ 1

0

p¡ 1

P -ary SC(²) channel

²0

²0

²0 =
²

p¡ 1

Decoder
m1, . . . ,mk x1, . . . , xn

xi ∈ Fp
r1, . . . , rn

ri ∈ Fp
m̂1, . . . , m̂k

Error correction coding

• Another simple channel model which has been extensively considered

• Has been the canonical model for algebraic coding theorists
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Generalized LDPC code and error channels

1

e1

e2

1

0

e3

Variable nodes

Check codes

y1y1

y ~my ~m

• GLDPC introduced by Tanner in 1981

• Each check is a (ñ, k̃), t-error correcting code

• If there are ≤ t errors in a check, it can be recovered

• For now, assume no miscorrections
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Peeling process is same for erasure and error channels

1

E

E

1

0

E

Variable nodes

Check nodes

1

e1

e2

1

0

e3

Variable nodes

Check codes

y1y1

y ~my ~m

• Assume 1-error correcting check code and no miscorrections

• One-to-one correspondence between messages passed - DE can be used

• Not optimal for the error channel but it is not bad at high rates

• Spatially coupled versions are optimal at high rates (Jian, Pfister and N) 47 / 90



Erasures to errors - tensoring and peeling

H =

 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1


⊗

B =

[
1 1 1 1 1 1
1 W W 2 W 3 W 4 W 5

]

H̃ =


1 0 1 1 0 0
1 0 W 2 W 3 0 0
1 1 0 0 1 0
1 W 0 0 W 4 0
0 1 1 0 0 1
0 W W 2 0 0 W 5



1

e1

e2

1

0

e3

Variable nodes

Check codes

y1y1

y ~my ~m

• W is a primitive element in the field

• Each check is a 1-error correcting code

• If there is exactly one error in a check, it can be recovered
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Product code

• Special case of generalized LDPC code

• Let component code C be an (ñ, k̃, d̃min) linear code

• Well-known that P is an (ñ2, k̃2, d̃2min) linear code

X0,0

X1,0

X2,0

X3,0

X4,0

X5,0

X6,0

X0,1

X1,1

X2,1

X3,1

X4,1

X5,1

X6,1

X0,2

X1,2

X2,2

X3,2

X4,2

X5,2

X6,2

X0,3

X1,3

X2,3

X3,3

X4,3

X5,3

X6,3

X0,4

X1,4

X2,4

X3,4

X4,4

X5,4

X6,4

X0,5

X1,5

X2,5

X3,5

X4,5

X5,5

X6,5

X0,6

X1,6

X2,6

X3,6

X4,6

X5,6

X6,6
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X5,3

X6,3
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X1,4

X2,4

X3,4

X4,4

X5,4

X6,4

X0,5

X1,5
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X4,5
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Peeling decoding of product codes

• Hard-decision “cascade decoding” by Abramson in 1968

• Identical to a peeling decoder

• Example: t = 2-error-correcting codes, bounded distance decoding

Received blockRow decodingColumn decodingDecoding successfulOr trapped in a stopping set

...

...

...

...

...

...

...

...

...

...

row codes column codes
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• Identical to a peeling decoder
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Density Evolution(DE) for Product Codes -Justesen et al

What is different about DE?

• Graph is highly structured

• Neighborhood is not tree-like

• Remarkably, randomness in the errors suffices!

Assumptions

• Errors are randomly distributed in rows and columns

• # errors in each row/col ∼ Poisson(M))

Main Idea

• Removal of corrected vertices (degree≤ t) from row
codes ⇔ removal of random edges from column codes
uniformly at random

• # of errors in row/column changes after each iter

• Track the distribution

...

...

...

...

...

...

...

...

...

...

row codes column codes
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DE continued

Tail of the Poisson distribution

πt(m) =
∑
j≥t

e−mmj/j!

Effect of first step of decoding

If the # errors is Poisson with mean M , Mean # of errors after decoding is

m(1) =
∑
j≥t+1

je−MM j/j! = Mπt(M)
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Evolution of degree distribution(d = 2) - first iteration
Row decoding

• Before row decoding

Distribution: Poisson(M), Mean: M

• After row decoding

Distribution: Truncated Poisson(M)
Mean: Mπt(M) = m(1)

Column decoding

• Before column decoding

Distribution: Poisson(m(1)),Mean: m(1)

• After column decoding

Distribution: Truncated Poisson(m(1))
Mean: m(2) =Mπt(m(1))

After every decoding

• Distribution is a Truncated Poisson(m(j))

• P [#errors = i] = bm(j)i

i!

0 5 10 15
0

0.1

0.2

0 5 10 15
0

0.1

0.2

0.3

0 5 10 15
0

0.1
0.2
0.3
0.4

0 5 10 15
0

0.2
0.4
0.6

53 / 90



Evolution of the degree distribution - jth iteration

Recursion

• m(0) = M

• m(1) = Mπt(M)

• m(j) = Mπt(m(j − 1))

Reduction in the parameter

• Average no. of errors in each row (column) = m(j)πt(m(j))

• Decoding of rows reduces the parameter by m(j)πt(m(j))
m(j−1)πt(m(j−1)) = Mπ(m(j))

m(j−1)

• New parameter is m(j + 1) = Mπ(m(j))

Threshold

In the limit of large ñ (length in each dimension), a t-error correcting product
code can correct ñM errors when

M < min
m
{ m

πt(m)
}
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Thresholds for asymptotically large field size

Threshold = # ofparitysymbols
# oferrors

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
t = 1 4.0 2.4436 2.5897 2.8499 3.1393 3.4378 3.7383
t = 2 2.3874 2.5759 2.9993 3.4549 3.9153 4.3736 4.8278
t = 3 2.3304 2.7593 3.3133 3.8817 4.4483 5.0094 5.5641
t = 4 2.3532 2.9125 3.5556 4.2043 4.8468 5.4802 6.1033

Notice that L,K = O
(
N

1−d
d

)
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Syndrome source coding

x2

x1 © e1

x3 © e2

x4

x5

x6 © e3

Variable nodes

Check codes

00
00

00
00

00
00

• Hx = 0

• Receive - r = x⊕ e
• Hr = He = y

• Recover x and sparse e

0

s1

s2

0

0

s3

Source nodes

Syndrome
Encoded output

y1y1
y2y2

y3y3
y4y4

y5y5
y6y6

• Hs = y

• Set r = 0 (Let a genie add x to r)

• y is given to the decoder

• Recover sparse s 56 / 90



Application 2
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Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

x[n] : Time domain signal of length N whose spectrum is K-sparse

x[n]
DFT−−→ X[k]

(K−sparse)

Compute the locations and values of the K non-zero coefficients w.h.p

58 / 90



Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

x[n] : Time domain signal of length N whose spectrum is K-sparse

x[n]
DFT−−→ X[k]

(K−sparse)

Compute the locations and values of the K non-zero coefficients w.h.p

Fast Fourier Transform (FFT)

• Sample complexity: N samples
• Computational complexity: O(N logN)

We want sublinear sample and computational complexity
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Sparse Fast Fourier Transform (SFFT) Computation

Problem Statement

x[n] : Time domain signal of length N whose spectrum is K-sparse

x[n]
DFT−−→ X[k]

(K−sparse)

Compute the locations and values of the K non-zero coefficients w.h.p

Related work

• Spectral estimation - Prony’s method

• More recently Pawar and Ramchandran’13, Hassanieh, Indyk, Katabi’12
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SFFT - A Sparse Graph Based Approach

Main Idea - Pawar and Ramchandran 2013

• Sub-sampling in time corresponds to aliasing in frequency

• Aliased coefficients ⇔ parity check constraints of GLDPC codes

• CRT guided sub-sampling induces a code good for Peeling decoder

• Problem is identical to syndrome source coding

FFAST for Computing the DFT - Pawar and Ramchandran 2013

• Sampling complexity: M = O(K) time domain samples

• Computational complexity: O(K logK)
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Subsampling and Aliasing - A Quick Review

Subsampling results in aliasing

• Let x[n]
N−DFT−−−−−−→ X[k], k, n = 0, 1, . . . , N − 1

• Let xs[n] = x[mL], m = 0, 1, . . . , N/L = M be a sub-sampled signal

• Let xs[m]
M−DFT−−−−−−→ Xs[l] be the DFT of the sub-sampled signal

• Xs[l] = M

L−1∑
p=0

X[l + pM ]
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Aliasing and Sparse Graph Codes

x[0] x[1] x[2] x[3] x[4] x[5]
DFT

X[0] X[1] X[2] X[3] X[4] X[5]

xs: Sub-sampled by f1 = P1 = 2

x[0] x[2] x[4]
DFT

Xs[0] Xs[1] Xs[2]

X[0] X[3]+ X[1] X[4] +X[2] X[5]+

zs: Sub-sampled by f2 = P2 = 3

x[0] x[2]
DFT

Zs[0] Zs[1]

X[0] X[3]+ X[1]X[4]+X[2] X[5]+ +

Factor graph

X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

Xs[0] = X [0] +X [3]

Xs[1] = X [1] +X [4]

Xs[2] = X [2] +X [5]

Zs[0] = X [0] +X [2] +X [4]

Zs[1] = X [1] +X [3] +X [5]
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FFAST Algorithm Example

↓3

↓3

↓2

↓2

z

z

2pt. DFT

2pt. DFT

3pt. DFT

3pt. DFT
x = (x[0], x[1], . . . , x[6]) xs = (x[0], x[2], x[4])

xs = (x[1], x[3], x[5])

zs = (x[0], x[3])

zs = (x[1], x[4])

Xs = (Xs[0], Xs[1], Xs[2])

X̃s = (X̃s[0], X̃s[1], X̃s[2])

Zs = (Zs[0], Zs[1])

Z̃s = (Z̃s[0], Z̃s[1])

Stage 1

Stage 2

X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

Xs[0] = X [0] +X [3]

X̃s[0] = X [0]w0 +X [3]w3

Xs[1] = X [1] +X [4]

X̃s[1] = X [1]w1 +X [4]w4

Xs[2] = X [2] +X [5]

X̃s[2] = X [2]w2 +X [5]w5

Zs[0] = X [0] +X [2] +X [4]

Z̃s[0] = X [0]w0 +X [2]w2 +X [4]w4

Zs[1] = X [1] +X [3] +X [5]

Z̃s[1] = X [1]w1 +X [3]w3 +X [5]w5

w = e−j
2π
6
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Singleton Detection

X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

Xs[0] = X [0] +X [3]

X̃s[0] = X [0]w0 +X [3]w3

Xs[1] = X [1] +X [4]

X̃s[1] = X [1]w1 +X [4]w4

Xs[2] = X [2] +X [5]

X̃s[2] = X [2]w2 +X [5]w5

Zs[0] = X [0] +X [2] +X [4]

Z̃s[0] = X [0]w0 +X [2]w2 +X [4]w4

Zs[1] = X [1] +X [3] +X [5]

Z̃s[1] = X [1]w1 +X [3]w3 +X [5]w5

w = e−j
2π
6

Singleton condition for a checknode

• Let i = −N
j2π log( X̃s[l]Xs[l]

). If 0 ≤ i ≤ N − 1, then checknode l is a Singleton.

• Pos(l) = i is the only variable node participating and Xs[l] is its value.
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FFAST Decoder

X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

Xs[0] = X [0] +X [3]

X̃s[0] = X [0]w0 +X [3]w3

Xs[1] = X [1] +X [4]

X̃s[1] = X [1]w1 +X [4]w4

Xs[2] = X [2] +X [5]

X̃s[2] = X [2]w2 +X [5]w5

Zs[0] = X [0] +X [2] +X [4]

Z̃s[0] = X [0]w0 +X [2]w2 +X [4]w4

Zs[1] = X [1] +X [3] +X [5]

Z̃s[1] = X [1]w1 +X [3]w3 +X [5]w5

w = e−j
2π
6

Peeling decoder

• 1 non-zero value among the neighbors of any right node can be recovered

• Iteratively errors can be corrected and analyzed for random non-zero coeffs
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FFAST Decoder Example

Example 1

Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7
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FFAST Decoder Example

Example 1

Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7

X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

Xs[0] = 9

X̃s[0] = 5w0 + 4w3

Xs[1] = 7

X̃s[1] = 7w4

Xs[2] = 0

X̃s[2] = 0

Zs[0] = 12

Z̃s[0] = 5w0 + 7w4

Zs[1] = 4

Z̃s[1] = 4w3

w = e−j
2π
6
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FFAST Decoder Example

Example 1

Let N = 6, and the non-zero coefficients be X[0]=5, X[3]=4, X[4]=7

X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

Xs[0] = 9

X̃s[0] = 5w0 + 4w3

Xs[1] = 7

X̃s[1] = 7w4

Xs[2] = 0

X̃s[2] = 0

Zs[0] = 12

Z̃s[0] = 5w0 + 7w4

Zs[1] = 4

Z̃s[1] = 4w3

w = e−j
2π
6

Yes, recoverable!
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Generalization

↓f2

↓f2

↓f1

↓f1

z

z

N/f2 DFT

N/f2 DFT

N/f1 DFT

N/f1 DFT
x xs

x̃s

zs

z̃s

Xs

X̃s

Zs

Z̃s...

Stage 1

Stage 2

Stage d

. . .
...

Peeling
Decoder

X

X [0]

X [1]

X [2]

X [3]

X [4]

X [5]

Xs[0] = X [0] +X [3]

X̃s[0] = X [0]w0 +X [3]w3

Xs[1] = X [1] +X [4]

X̃s[1] = X [1]w1 +X [4]w4

Xs[2] = X [2] +X [5]

X̃s[2] = X [2]w2 +X [5]w5

Zs[0] = X [0] +X [2] +X [4]

Z̃s[0] = X [0]w0 +X [2]w2 +X [4]w4

Zs[1] = X [1] +X [3] +X [5]

Z̃s[1] = X [1]w1 +X [3]w3 +X [5]w5

w = e−j
2π
6

Reed Solomon component codes

• (Xs[l1], X̃s[l1]) correspond to 2 syndromes of a 1-error correcting RS code

• RS is over the complex field, no miscorrection
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Product codes and FFAST (d = 2)

• X: K-sparse spectrum of length N = P1P2 (P1 and P2 are co-prime)

• X ′: P1 × P2 matrix formed by rearranging X according to mapping M

Xs[l1] =

P2−1∑
i=0

X[l1 + iP1], 0 ≤ l1 ≤ P2 − 1

Zs[l2] =

P1−1∑
i=0

X[l2 + iP2], 0 ≤ l2 ≤ P1 − 1

Mapping

The mapping from X(r) to X ′(i, j) is given by

(i, j) =M(r) ≡ (r mod P2, r mod P1).

Note: CRT ensures that M is bijective

X[0] X[5] X[10] X[15]

X[16] X[1] X[6] X[11]

X[12] X[17] X[2] X[7]

X[8] X[13] X[18] X[3]

X[4] X[9] X[14] X[19]

Xs[0]

Xs[1]

Xs[2]

Xs[3]

Xs[4]

Zs[0] Zs[1] Zs[2] Zs[3]
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Product codes and FFAST (d ≥ 3)

N = P1 × P2 × . . .× Pd

(i1, i2, . . . , id) =M(r) ≡ (r mod f1, r mod f2, . . . , r mod fd).

Less-sparse regime

fi = N/Pi, i = 1, 2, . . . , d

d = 3

P1%

P3
%

X%

Y%
Z%

Very-sparse regime

fi = Pi, i = 1, 2, . . . , d

d = 3

P1%

P3
%

X%

Y%
Z%
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Connections between FFAST and Product Codes

↓f2

↓f2

↓f2

↓f1

↓f1

↓f1

z

z

z

z

...

...
N/f2 DFT

N/f2 DFT

N/f2 DFT

N/f1 DFT

N/f1 DFT

N/f1 DFT

x xs

x1s

x(2t−1)s

zs

z1s

z(2t−1)s

Xs

X1s

X(2t−1)s

Zs

Z1s

Z(2t−1)s

...

Stage 1

Stage 2

Stage d

. . .
...

Peeling
Decoder

X

P1%

P3
%

X%

Y%
Z%

FFAST ⇔ Product codes
d stages ⇔ d-dimensional product code

2t branches ⇔ t-error correcting RS component codes
Non-zero coefficients ⇔ Error locations

Recovery of coefficients ⇔ Iterative decoding
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Thresholds

Theorem 1

Less sparse case: In the limit of large P , the FFAST algorithm with d branches
and 2t stages can recover the FFT coefficients w.h.p if K < 2dt

cd,t
.

cd,t = minm{m/πd−1(m)}

Threshold = # of measurements
recoverable sparsity = 2dt

cd,t

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
t = 1 4.0 2.4436 2.5897 2.8499 3.1393 3.4378 3.7383
t = 2 2.3874 2.5759 2.9993 3.4549 3.9153 4.3736 4.8278
t = 3 2.3304 2.7593 3.3133 3.8817 4.4483 5.0094 5.5641
t = 4 2.3532 2.9125 3.5556 4.2043 4.8468 5.4802 6.1033

Notice that L,K = O
(
N

1−d
d

)
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Interference-tolerant A/D Converter

Processing
RF Notch

Filter
Hi−Res

ADCTIA

TIA Sensing
Fast Spectrum

LNA

Low−Res
ADC

LO

LO

Baseband Signal
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Open problems

• If we use MAP decoding, is the subsampling procedure optimal?

• What happens when N = 2i ?

• Bursty case? Can we have threshold theorems?

• Using this idea in actual applications
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Syndromes and decoding

Hm×n
(Parity checks)

cn×1
(codevector)

...

e
(error vector)

t−sparse

...
× +

ei

ej

et

...

=

ym×1

Syndromes

· · ·
...

h1 h2 hi · · · hn−1 hn ...

0 +

• Syndrome : Linear combination of his, i.e., y = eihi ⊕ ejhj ⊕ etht
• Decoding : Find min weight e : y = eihi ⊕ ejhj ⊕ etht

Coding theory deals with the construction of H and efficient decoding algorithms,
i.e., given a linear combination of the columns of H, it develops tools to
determine a sparse e
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Syndrome source coding

Hm×n
(Parity check matrix)

×· · ·
...

h1 h2 hi · · · hn−1 hn

x
(Sourcevector)

t−sparse

...

x1

xi

xt

...

ym×1

Syndromes

=

...

Compression of a sparse binary source

• Compressed version is the syndrome y

• Reconstruction is the same as decoding

• Similar to the canonical sparse recovery problem

74 / 90



Review of primitives

• Idea of a check node or a measurement node which is a function of some
symbols

• Singleton detection - be able to identify one non-zero symbol

• Peeling - if we know some symbols, be able to remove and adjust
measurement
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Application 3
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Compressed sensing

...

a1

a2

am

Am×n
(m�n)

xn×1
(K−sparse)

...

×
...

=

ym×1
(observations)

Classical compressed sensing

• x is a K-sparse vector over R or C
• We ‘compress’ x by storing only y = A x

• Reconstruction - Solve x̂ = arg min ||z||0 : y = Az

• CS - Solve x̂ = arg min ||z||1 : y = Az

Coding theoretic approach - syndrome source coding over complex numbers

• Sensing matrix A⇔ Parity check matrix H
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Data stream computing

Problem - consider a router in a large network

• Count the number of packets from source i to destination j, say xij

• Data vector is huge, n = 264

• Heavy hitters - only a few of them are large

...

a1

a2

am

Am×n
(m�n)

xn×1
(K−sparse)

...
×

...
...

=

ym×1
(sketch of x)

· · ·

b0 b1 b2 · · · bn−1 bn

Keep only a low dimensional (m� n) sketch of x

• y
m×1 = Ax⇔ Syndrome, xi,j ∈ Z+

• Reconstruction is same as decoding 78 / 90



Incremental updates

...

a1
a2

am

Am×n
(m�n)

xn×1
(K−sparse)

...
×

∆i
(increment)

...
× +

k

...

=

ym×1
(sketch of x)

· · ·
...

...

bk
(update)

· · ·

b0 · · · bk · · · bn−1 bn ...

+

Sketch y supports incremental updates to x as the sketching procedure is linear.
x+ ∆i → y +A∆i

(adding ith column vector of A to existing sketch)
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Compressed Sensing (Li, Ramchandran ’14)

...

a1

a2

am

Am×n
(m�n)

xn×1
(K−sparse)

...

×
...

=

ym×1
(observations)

0

s1

s2

0

0

s3

Source nodes

Syndrome
Encoded output

y1y1
y2y2

y3y3
y4y4

y5y5
y6y6

Sketching matrix (Am×n)

Am×n = Hm
2 ×n

(d−left regular Graph)
⊗ B2×n

(Singleton identifier)

B =

[
1 1 1 · · · 1
1 W W 2 · · · Wn−1

]
W = ej

2π
n
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Main results for compressed sensing

Noiseless case

• Samples : 2K versus Info-theoretic limit K + 1

• Computations: O(K) versus O(K2)

• If K = O(nδ), small price to pay in terms of samples

Noisy case

• Sample: O(k log1.3. n) vs limit: O(k log(n/k)) necessary and sufficient

• Computations: O(k log1.3. n)

Vem, Thenkarai Janakiraman, N. ITW’16

• Sample: O(k log1.3.(n/k)) vs limit: O(k log(n/k)) necessary and sufficient

• Computations: O(k log1.3.(n/k))
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Group Testing (Lee, Pedarsani, Ramchandran ’15)

• II World War - detect all soldiers with syphilis

• Tests performed on efficiently pooled groups of items

• Least no. of tests (m) to identify k defective items from n items
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Group Testing

Example

1

2

3

4

5

6

7

8

a1 =

2 4 5 6 8

0 1 0 1 1 1 0 1[ ]

a2 =

1 2 4

1 1 0 1 0 0 0 0[ ]

a3 =

2 3 5

0 0 1 1 0 1 0 0[ ]

a4 =

6 7 8

0 0 0 0 0 1 1 1[ ]

Test Results (Observations)

yi =
N∨
j=1

aijXj =< ai, X >

Negative

y1 = 0

Positive

y1 = 1

Positive

y1 = 1

Positive

y1 = 1

X=[1 0 1 0 0 0 1 0]

Test-1

Test-2

Test-3

Test-4
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Group Testing

...

a1

a2

am

Am×n
(m�n)

(Pooling matrix)
Xn×1

(K−sparse)

...

�
...

=

Ym×1
(Observations)

Ym×1
(Observation vector)

= A�X =


< a1, X >
< a2, X >

...
< am, X >

 < ai, X >=
N∨
j=1

aijXj
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Group Testing

Singleton detection

[
H1
H1

]
=

[
b1 b2 b3 · · · bn−1
b1 b2 b3 · · · bn−1

]
=



0 0 0 · · · 1 1
0 0 0 · · · 1 1

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
0 0 1 · · · 1 1
0 1 0 · · · 0 1

−− −− −− −− −− −−
1 1 1 · · · 0 0
1 1 1 · · · 0 0

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.
1 1 0 · · · 0 0
1 0 1 · · · 1 0



Note: If a checknode is a singleton, with ith bit-node participating, then the
observation vector is the ith column of A.

• Singleton - if the weight of first two observation vectors together is L.

• Position of the defective item is - decimal value of the 1st observation vector.
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Group Testing

Measurement matrix (Am×n)

Am×n = Gm
6 ×n

(d−left regular Graph)
⊗ H6×n

(Singleton identifier)

Let, bi denote the L-bits binary representation of the integer i− 1, L = dlog2 ne.

H =



b1 b2 b3 · · · bn−1

b1 b2 b3 · · · bn−1

bi1 bi2 bi3 · · · bin−1

bi1 bi2 bi3 · · · bin−1

bj1 bj2 bj3 · · · bjn−1

bj1 bj2 bj3 · · · bjn−1


s1 = (i1, i2, · · · , in−1) and s2 = (j1, j2, · · · , jn−1) are permutations

Decoding procedure

• Identify and decodes singletons using weights of the observation vector

• Identify and resolve doubletons by guessing to satisfy the first pair of
observation vectors and checking if the guess satisfies the other two pairs of
observations

• The iteration continues until no doubletons can be resolved
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Main results for group testing

Non-adaptive Group Testing (Noiseless and Noisy)

• Recovers (1− ε)k items with h.p.

• Samples: m = O(k log2 n) versus limit: Θ(k log(nk ))

• Computational complexity: O(k log n) (order optimal)
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Compressive Phase Retrieval

Am×n | . | Decoder

y =| AX |

measurement
vectors

magnitude
measurements

X̂

X ∈ Cn

(K-sparse)

estimated
signal

...

a1

a2

am

Am×n
(m�n)

xn×1
(K−sparse)

...

×
...

=

ym×1
(observations)

| . |

| . |

| . |
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Conclusion

• Review of a simple message passing decoder called the peeling decoder

• Density evolution as a tool to analyze its asymptotic performance

• Applications

Massive uncoordinated multiple access
Sparse Fourier transform computation
Compressed sensing type sparse recovery problems
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Questions?

Thank you!
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