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Abstract—Wireless networks are increasingly used to
carry applications with QoS constraints. Two problems arise
when dealing with traffic with QoS constraints. One is
admission control, which consists of determining whether it
is possible to fulfill the demands of a set of clients. The other
is finding an optimal scheduling policy to meet the demands
of all clients. In this paper, we propose a framework for
jointly addressing three QoS criteria: delay, delivery ratio,
and channel reliability.

We analytically prove the necessary and sufficient con-
dition for a set of clients to be feasible with respect to
the above three criteria. We then establish an efficient
algorithm for admission control to decide whether a set
of clients is feasible. We further propose two scheduling
policies and prove that they are feasibility optimal in the
sense that they can meet the demands of every feasible
set of clients. In addition, we show that these policies are
easily implementable on the IEEE 802.11 mechanisms. We
also present the results of simulation studies that appear
to confirm the theoretical studies and suggest that the
proposed policies outperform others tested under a variety
of settings.

I. INTRODUCTION

Wireless networks have been widely deployed for a
variety of purposes. Among the many applications that
benefit from wireless networks, those with quality of
service (QoS) constraints are increasingly of interest.
They include video streaming, VoIP, real-time monitoring,
networked control, etc. One common characteristic of
these applications is that they have some requirements
on throughput, delay, and delivery ratio. Hence, most
current network mechanisms, which only provide “best-
effort” service, are not adequate for these applications.

While there has been much research interest in provid-
ing QoS, there is a dearth of analytical studies and theo-
retical guarantees on the service that can be provided. A
fundamental difficulty is that it is important to specifically
take into account a most important feature of wireless
network, that is, the lossy channel. As more and more
devices, such as cordless phones, Bluetooth and Zigbee
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devices, are accessing the same unlicensed channel as
wireless networks, packet loss can no longer be neglected.

We provide an analytical framework for addressing QoS
constraints in wireless networks that allows the incorpora-
tion of three criteria with each flow: delay, delivery ratio,
and channel reliability. We first identify a necessary con-
dition for a set of flows to be feasible with respect to the
above three QoS criteria. Next, two dynamic scheduling
policies for these applications are proposed. We prove that
the proposed policies can meet the demand of every set
of flows that satisfies the identified necessary condition.
Thus, we not only show that the necessary condition is
indeed sufficient, but we also prove our proposed policies
are optimal. Finally, while the necessary and sufficient
condition involves exponentially many inequalities to be
checked, we show that those criteria can be simplified into
linearly many tests. We thus obtain an efficient admission
control algorithm for flows with QoS.

Our contribution is therefore threefold. First we pro-
pose a mathematical framework for QoS for handling
deadlines, delivery ratios and channel unreliability. Sec-
ond, the linear time algorithm makes admission control
computationally efficient. Third, the simple nature of
the policies proved to be feasibility optimal shows that
scheduling for QoS is tractable and feasible at run time.

In addition to the theoretical results, we also evaluate
the proposed policies by simulation. We implement the
two policies by widely-used IEEE 802.11 mechanisms. We
compare the two policies against the IEEE 802.11 Dis-
tributed Coordination Function (DCF) and a server-centric
scheduler that gives equal transmission opportunities to
all clients. Simulation results suggest that the proposed
policies offer much better service than the two compared
mechanisms.

The rest of the paper is organized as follows: Section
II summarizes some existing work on providing QoS.
Section III formally models the wireless channels and
formulates a framework for addressing QoS constraints.
Based on the formulation, Section IV develops some
preliminary results that provide insights into designing
scheduling policies and employing admission control. In
Section V, we propose two scheduling policies. We prove
they are both feasibility optimal in Section VI. In addition,
in Section VII, we propose an efficient admission control
algorithm. In Section VIII, we show how to implement the



proposed scheduling policies on IEEE 802.11. Simulation
results are described in Section IX. Section X concludes
the paper.

II. RELATED WORK

Scheduling policies for QoS support on error-prone
wireless channels have been increasingly of interest in
recent years. Tassiulas and Ephremides [17] have pro-
posed a max weight scheduling policy and proved that it
is throughput optimal. Neely [10] have further evaluated
this policy and have shown that the policy achieves a
constant average delay. Shakkottai and Stolyar [14] have
evaluated various scheduling policies to support a mixture
of real-time and non-real-time traffic. Johnsson and Cox
[7] have proposed a policy that aims to achieve both
small packet delay and high user throughput. Dua and
Bambos [4] have focused on the trade-off between user
fairness and system performance and designed a policy
for this purpose. However, all these works lack a thorough
theoretical study with provable performance guarantees.
Raghunathan et al [12] and Shakkottai and Srikant [13]
have developed analytical results on scheduling. However,
the goal of their works is to minimize the total number of
expired packets among all users, which will inevitably be
unfair to clients with poor channel qualities. Stolyar and
Ramanan [16] aim at offering QoS guarantees on a per-
client basis. Their approach offers asymptotic optimality
only when the period is large. Kawata et al [8] have
focused more on implementation issues and enhancing
QoS for the IEEE 802.11 mechanisms. Their simulations
have been conducted in a controlled environment where
packet losses are infrequent. Other works [1] [2] have
considered different performance metrics and modeling
assumptions.

Compared to scheduling policies, there are fewer an-
alytical studies on admission control. Xiao et al [18]
and Pong el al [11] have proposed admission control
algorithms to guarantee a certain amount of bandwidth
for each user but do not take into account any latency
constraints. Garg et al [5], Zhai et al [19], and Shin and
Schulzrinne [15] have used various metrics to predict
system performance statistically but lack a theoretical
study.

ITII. A MoODEL FOR QO0S

We consider a system with N wireless clients and one
access point (AP). Each client wishes to transmit packets
to the AP with some QoS constraints. It is assumed that
time is slotted. At the beginning of a time slot, the AP
broadcasts a control message, indicating which client can
transmit in the time slot. The assigned client then sends
out a packet if it has a packet waiting to be transmitted.
The size of a time slot is the time required for the AP
to send the control packet plus the time for a client to
transmit a data packet. While this model appears to as-
sume that there is no traffic from the server to clients, we
show in Section VIII-B that all the results are applicable

to the case where clients require QoS-constrained traffic
from the server.

The QoS constraints for a client are described as
follows: At the beginning of every period of length 7,
where the length is measured in time-slots, each client
n € {1,2,---, N} generates one data packet. The packets
of all clients are to be delivered to the AP within the
next 7 time slots before the end of the period. If a
packet is not delivered by the end of the period, it is
marked as expired and removed from the system. Thus,
we can guarantee that the delay of each delivered packet
is less than 7. Further, client n requires a delivery ratio
of at least ¢,. That is, the proportion of expired packets
cannot exceed 1 — ¢,. Finally, reflecting the nature of
the unreliable wireless channels, client n has a channel
reliability of p,; that is, the proportion of transmissions
of client n that are successfully delivered to the AP is p,.
This channel reliability reflects qualities of both uplink
and downlink since a successful transmission includes the
delivery of both the control message by the server and
the data packet by the designated client. The value of p,
can be obtained by probing messages before the client
is admitted into the system and updated as long as the
client stays in the system. The different values of p,, for
different clients also reflect the fact that wireless links are
not homogeneous and vary in quality from user to user.
The decision on which client is chosen to transmit on a
slot is specified by a scheduling policy which makes the
decision causally based on the entire past history of events
up to that time slot.

We wish to provide a service for clients with QoS
constraints as described above.

Definition 1: A set of clients with the above QoS con-
straints is said to be fulfilled by a particular scheduling
policy n if the time averaged delivery ratio of each client
n is at least g, with probability 1. !

Due to the limited wireless resource, the requested QoS
demands of the set of clients may exceed the capacity of
the wireless network. In this case, a service that aims to
fulfill all clients may end up providing poor performance.
Therefore, a desired service must incorporate some admis-
sion control mechanism. To perform admission control, it
is vital to verify whether a set of clients is feasible:

Definition 2: A set of clients is feasible if there exists
some scheduling policy that fulfills it.

In addition to an efficient admission control mecha-
nism,we also aim to design a feasibility optimal scheduling
policy:

Definition 3: A scheduling policy is said to be feasibility
optimal if it fulfills every feasible set of clients. 2

IMore formally, lim inf g, oo % Zle 1(A packet of client n is deliv-
ered successfully in period k) > ¢, with probability one, for each client
n=1,2,---,N, where 1(-) is the indicator function of the event.

2This is analogous to the notion of “throughput optimality” in queuing
systems.



IV. NECESSARY CONDITION FOR FEASIBILITY OF QOS

It is quite evident that the more time slots we allocate
to a particular client, the more likely it is that we can
meet the demand of that client. We further observe that
whether the demand of a client is met is only related
to the proportion of time slots in which the client is
transmitting.

Lemma 1: The delivery ratio of client n is at least
¢ with probability 1 if and only if the long-term time
average of the proportion of time slots that client n is
transmitting is at least w, = p‘l—"T

Proof: Define:

() = 1, if client n makes a transmission at time ¢,
Unil) = 0, otherwise,

and

d(t) = {

Let §; be the o-algebra generated by {(un(k),d,
1)), for1<k<tand 1<n<N}. (Wesetd,(0)=
all n.)

Then E[d,(t)|F:] = pnun(t). Hence, by the martingale
stability theorem of Loeve [9],

1, if client n delivers a packet at time ¢,
0, otherwise.

(k —
0 for

T

lim = "[dn(t) — ppun(t)] =0, as. €))

Since the delivery ratio of client n must be at least ¢,

T
o1 dn
1 f— > —, a.s.
e PILUE

Hence, liminfr_o = Zthl up(t) > = from (1).
|

We will hereafter refer to w, as the implied work load
for client n. Determining whether client n is fulfilled is
therefore equivalent to deciding whether the share of time
that client n gets is at least as large as its implied work
load. This helps to partially decouple the clients.

We next study whether it is possible to fulfill a set of
clients. Since there is at most one client that can transmit
in any time slot, we immediately obtain the following
necessary condition:

Lemma 2: A set of N clients can be feasible only if
25:1 wy, < 1.

This necessary condition, however, is not sufficient.
Since each client only generates one packet in each
period, it might be the case that at some slot in a period,
all packets in the system are delivered and the system
is forced to stay idle. (Recall that expired packets are
deleted from the system at the end of a period, and so only
new packets are available in a system at the beginning of
each period). While the amount of time that the system
is idling may be influenced by the scheduling policy, we
show it is the same for some particular policies:

Definition 4: A scheduling policy is work conserving if
it never idles whenever there is an undelivered packet in
the system.

Lemma 3: The probability distribution of the amount
of time that the system is idling in any period is identical
for every work conserving policy.

Proof: Let the random variable ~,, denote the number
of slots a packet of client n is transmitted before it is
delivered. The distribution of ,, is Prob(y, =t) = p,(1—
pn)t71. Under any work conserving policy, the number of
idle time slots in a period, L, is the number of time slots
left after all packets in the system are delivered:

N . N
L = T Zn:l s if anl Yn < T,
0, otherwise.

Hence its probability distribution is the same under
every work conserving policy. |

The following observation allows us to focus only on
work conserving policies when designing a feasibility
optimal policy:

Lemma 4: Let n be a scheduling policy that can meet
the demands of a particular set of clients. Then there
exists a work conserving policy ' that can also meet the
requirements of the same set of clients.

Proof: Policy n can be extended to be a work-
conserving policy 7’ by simply filling slots that  would
leave idle by transmitting any undelivered packets in arbi-
trary order. This cannot reduce the number of undelivered
packets in any period. |

Note that for at least E[L] number of slots of each
period, on average, the server must be idle. The fraction of
idle time is therefore at least @ Hence we can improve
the necessary condition in Lemma 2 to

N
S w, <1 @
n=1

-

However, we can go even further by considering subsets
of the set of all clients {1,2,---, N}. For any subset S C
{1,2,--- ,N}, let

Elmax{0,7 — >, csVn}] .

Is :=

It is a lower bound on the fraction of time spent idling,
if S were the set of all clients. Clearly if {1,2,--- N} is
feasible, then every subset S must be feasible. Hence we
can tighten the condition (2):

Lemma 5: A set of clients is feasible only if ) o w, <
1 — Is holds for every subset S.

The reason why the condition for a subset S is not
subsumed by the condition for all clients is that ) o wy,
is monotone increasing in S, while Ig is monotone de-
creasing in S. Surprisingly, we will show that the above
necessary condition is actually sufficient in Section VI.

V. SCHEDULING POLICIES

In this section, we propose two scheduling policies on
providing QoS. Both policies are what we call largest debt



first policies. The idea of a largest debt first policy is to
compute the debt owed to each client at the beginning of
every period. The server then determines the priorities of
clients according to their debts, a clients with larger debt
getting a higher priority. Ties are broken by lexicographic
order. In each time slot of the period, the client with the
highest priority among those who have not yet succeeded
in a transmission is scheduled to transmit. The only
difference between the two policies lies in the definitions
of debts.

The first policy, which we call the largest time-based debt
first policy, tries to make every client get a share of time at
least as large as its implied work load. To see how much
a client lags behind its implied work load, we define debt
as follows:

Definition 5: The time-based debt of client n at time ¢ is
defined as ¢ x w,, minus the actual number of time slots
that client n has transmitted by time slot ¢. The policy
which assigns priorities accordingly is the largest time-
based debt first policy.

The next policy, which we call the largest weighted-
delivery debt first policy, approaches the QoS requirements
more directly. It seeks to make every client have a success
rate higher than the desired delivery ratio, that is, g,.

Definition 6: Let c¢,(t) be the number of successful
transmissions of client n up to time ¢. The weighted-
delivery debt of client n at time ¢ is defined as (% x ¢, —
¢n(t))/pn. The policy which assigns priorities accordingly
is called the largest weighted-delivery debt first policy.

VI. PROOFS OF OPTIMALITY

We prove that the two largest debt first policies are fea-
sibility optimal policies. The proof is based on Blackwell’s
approachability theorem [3]. We first describe the content
of this theorem.

Consider a single-player repeated game. The payoff,
instead of being a single number, is an N-dimensional
vector, v € RY. In each stage i, the player picks an action,
a(i), according to some history dependent policy, based
on past actions a(1),---,a(i — 1), and past payoffs in
the previous stages, v(1),--- ,v(¢ — 1). The payoff of this
stage, v(i), is a random vector whose distribution is a
given function, which we call the payoff function, of the
action a(i) taken. We are interested in the distribution
of the long-term average payoff, lim; .. > 7_, v(i)/j. To
study the problem, Blackwell introduced the concept of
approachability:

Definition 7: Let A C RY be any set in N-dimensional
space. We shall say A is approachable under policy 7, if
for every § > 0 and ¢ > 0 there is a jy such that,

Prob{p(j) > ¢ for some j > jo} <-e,

where p(j) denotes the distance of the point Y 7_, v(i)/j
from A. In other words, this means the long-term average
payoff will approach A with probability 1.

Let R(a) be the expected payoff of action q, i.e., the ex-
pected value corresponding to the probability distribution

of the payoff function. Blackwell’s sufficient condition for
approachability is the following:

Theorem 1: Let A C RY be any closed set. If for
every © ¢ A there is an action a (= a(x)) such that
the hyperplane through y, the closest point in A to =z,
perpendicular to the line segment xy, separates x from
R(a), then A is approachable with the policy n which uses
action a(z;) if z; = (3°]_,v(i)/j) ¢ A, and an arbitrary
action otherwise.

Since every feasible set of clients has to satisfy the
necessary condition stated in Lemma 5, it suffices to show
that both policies fulfill every set of clients that satisfies
the necessary condition.

Theorem 2: The largest time-based debt first policy is
feasibility optimal.

Proof: We first translate the largest time-based debt
first policy into a policy for the single player game. A
stage in the game corresponds to a period in our model.
The action that the player, which is the server in our
system, can take, is to decide the priorities of the clients,
with the interpretation that a client with a certain priority
is transmitted only after the client with the immediately
higher priority is successful. The payoff a player gets in
the stage is the net change of the time-based debt of each
client. To be more precise, the payoff is a vector whose
nt" element equals 7w, minus the actual number of time
slots that client n is transmitting in this period.

Lemma 1 shows that a group of clients is fulfilled if
every of them gets an average share of time at least w,,.
In terms of approachability, this means a group of clients
is fulfilled if the set A := {z = [21, 22, -+ , 2n]|zn, < 0,Vn}
is approachable.

Now we apply Theorem 1. Suppose at the beginning
of some period the average payoff x = [z1,22, - ,2ZN]
does not lie in A. We can reorder the clients so that z; >
Tg >+ > Xy >0> 201 > - > xn. The closest point
in Atozisy = [0,0,--+,0,Zmt1,Tm+2, - ,2N]|. The
hyperplane H through y and perpendicular to the line
segment zy is comprised of points z satisfying h(z) :=
S Tnzn = 0.

Let Z be the expected payoff in this round according to
the largest time-based debt first policy. Also, let w,, be the
expected portion of time slots that client n is transmitting
during this period. We can now express

T = [Twy — TW1, TWwe — TWa, - -]
= Tlwy — W1, wy — o, ].

Since h(z) = Y. 22 > 0, in order to show that H
separates x and Z, it suffices to show h(z) < 0. We have

h(x) =T Z mn(wn - wn)
m—1 n n
=7 ) (@0 = 20p) O we — Y wy)]
n=1 k=1 k=1
+ T;Em(z Wg — Zwk)
k=1 k=1



By the largest time-based debt first policy, the server
will give priorities according to the ordering 1,2,--- , N.
Hence, Y _, w; will be the average portion of time
the system spends working if only clients 1 through n
are present in the system. In other words, > ;_, w; =
1 —I{12,... ny- Now, according to the necessary condition
stated in Lemma 5, we have )  wp <1— Ifi2,. ) =
Zk L Wy. Further, 2y > 29 > -+ > 2, > 0. Hence,
h(z) < 0 and the largest time-based debt first policy is
therefore feasibility optimal. |

Theorem 3: The largest weighted-delivery debt first
policy is feasibility optimal.

Proof: Again, we translate the largest weighted-
delivery debt first policy into one for the single player
game. As in the previous proof, a stage in the game
corresponds to a period in the system, and the action
of a player is to decide the priorities of the clients at
each stage. However, in this proof, the payoff corresponds
to the net change of the weighted-delivery debt of each
client. In other words, the payoff is an N-dimensional
vector, whose n'" element is (¢, — 1)/p, if the packet
of client n is delivered in the period, and g, /p, if not.
A set of clients is fulfilled if each client has a negative
weighted-delivery debt. Hence, we need to show that the
set A :={z=[z1,292, - ,2n]|2n < 0,Vn} is approachable.

Suppose at the beginning of some period, the average

payoff x = [x1,x9, - ,zy] does not lie in A. We can
reorder the clients so that zy > zo > -+ > =z, >
0 > zpe1 = -+ > xy. The closest point in A to x is

=10,0,--,0,Zm+t1, Tmt2, -+ ,&n]. The hyperplane H
through y and perpendicular to the line segment zy is
comprised of points z with h(z) := > 1" | z,2, = 0.

Let 7, be the probability that client n delivers its packet
in the period. The expected payoff of this period is z =
(g1 =m1)/p1, (g2=m2)/p2, - -, (an—mn) /px]. Since hix) =
> a2 >0, we only need to show h(Z) < 0 to establish
approachablhty of A. We have

e Pn
m—1 n q n -
k k
= [(zn — 2p41)( 7_27 J
n—1 k=1 Pk 2 PR
k
P32 - $ )
=1 Pk 5 PR
m—1 n n
—r S-S
n=1 =1 k=1 Tpk
m m ﬂ_
+ T2 ( Z Z —) (since w,, = T‘? ).
k=1 k=1

Since z; > x9 > <o > @, > 0, it suffices to show
Srqwr < >r, Tp , for every n. Notice now that the
necessary condition in Lemma 5 requires >} 1 Wk <1 —
I 1.2, n} The proof is therefore complete if we can show
= 1-1I{12,... n}- This is done in Lemma 6 below.

|

k= 17';17;c

Lemma 6: Under the priority order {1,2,---
Zk 17“‘* (1*[{12 ),forn:1,2,~~,N.
Proof We prove this by induction. First consider the
case where n = 1. Since client 1 has the highest priority,
it fails to deliver its packet only when every transmission
during this period fails. Thus, 7 =1— (1 —p;)”. Next we
compute the value of I¢;,. The probability that client 1
delivers its packet on the v*" transmission is p; (1—p;)7 7%,
which will result in 7 — ~ idle time slots. Hence, I{, =

N}

T T —p)T =1 17(;%”. This yields
—7lpy =[1-(1-p1)7]/p1 = %, for every period. (3)

Assume }°; 7 = 7(1 = Ij1.. ) for all n < m.

m+1
We wish to+1show Py + k= (1 — If1,.. ms1y)- Let
=S ;—: — Zkzlg—’; = p:ii and A; == 7(1 —
1{1,.“ ma1}) =T =T omy) = 7Ly = T m

Since client m + 1 is the one with least priority among
clients 1 through m + 1, it can transmit only after all
packets from clients 1 through m are delivered. Suppose
there are o time slots left when client m + 1 can transmit,
with ¢ a random variable. Let 7,,1(¢) be the probability
that the packet of client m + 1 is delivered, and let
Cm+1(t) be the number of time slots left when client m+1
succeeds, given that o = ¢. As in the case of n = 1, we

have %igt) =t—(m+1(t). A, and A; can be obtained
as

7Tm+1(t)
A, = ———~Prob(c =t
» Z oo~ Problo =)

- Z t_<m+1
= ZtProb (o =
t

)Prob(c = t)

) =Y Gme1(t)Prob(o = t)

=7l my =TI 1y = AL
Finally, since A, = Ay, erll Tk = T(1 = I, mg1y)-
By induction, 7, 7% = 7(1—I{1 5 ... »}) holds for all n.
|

Since both policies fulfill every set of clients that is
consistent with the necessary condition in Lemma 5, the
necessary condition is also sufficient.

Theorem 4: A set of clients is feasible if and only if
> nes Wn < 1—1Ig for every subset S of the clients, where
I is the expected proportion of idle time for S under any
work conserving policy.

VII. A EFFICIENT ALGORITHM FOR ADMISSION CONTROL

Performing admission control essentially consists of
deciding whether a set of clients is feasible. While The-
orem 4 states a necessary and sufficient condition for
feasibility, it requires testing every subset of N clients,
and thus results in exponentially many tests in N. In
this section, we show that we only need to evaluate a
total number of N conditions to determine feasibility.
The following theorem therefore makes admission control
computationally efficient, and feasible to implement.



Theorem 5: Order the clients so that ¢; > ¢ > -+ >
gn. Let Sy be the subset of clients {1,2,--- ,k}. The set
of all clients is feasible if and only if ), ¢ w, <1—1Ig,
for all k.

Proof: 1t is quite obvious that the condition is nec-
essary for feasibility. Hence, we only need to prove that
it is also sufficient. We prove the converse statement: If
a set of clients is not feasible, then for at least one k,
ZTLESk wy, > 1 — Isk.

Define a minimal infeasible subset as a smallest subset .S
with ) o w, +Is > 1. Within every infeasible set there
is always at least one such subset. Let m be the client with
the largest index in S, i.e., the client latest in the order in
S. We claim that ) g wy, + Is, > 1. If S is S, itself,
then we are done. Otherwise, pick a client m/’ latest in the
order from S,,,\S and let S’ := SU{m’'}. Let D,,(S,m’) :=
ZnESU m'} Wn _Znes Wn, and DI(S7 m/) = ISU{m/} _IS'
Since inES wyp+1Is > 1, we canshow ) o w,+Is > 1
by establishing D, (S, m') + D;(S,m’) > 0.

It is obvious that D,,(S,m’) = w,, . The expression for
Dy (S, m') is more complicated. Note that —7D;(S,m’) is
the number of time slots that client m’ will be transmitting
if it is given the least priority when the set of clients is .5’.
Suppose it takes ¢ time slots for every client in S to deliver
its packet, then (3) shows the expected number of time
slots client m’ spends transmitting is [1—(1—py )" t] /D -
Hence, —D;(S,m’) = Y20 fs (1)1 — (1 = pu )™} /o,
where fs(t) is the probability that all clients in S deliver
their packets in exactly ¢ time slots . Now we have

1—(1—pm)™"

previous paragraph yields

l)w(S7 m’) + DI(57 m/) > L(QM’ - ZfS(t))

TPm/ i

1
(Qm’ - Qm) Z 0;
TPm/

since client m occurs later in the order than client m/,
and we have sorted clients so that ¢; > g2 > -+ > gqn.

Now we have established }° o w, + Iss > 1, where
S’ = Su{m'}.If 8’ = S,,, we are done. Otherwise, we can
choose another client m” with the highest order in S,,\ S’
and repeat the above argument to show >/, {mr} WnT
Isiogmmy > 1. By induction, >, s wy + Ig,, > 1. [ ]

In addition to reducing the number of needed tests
to N, this theorem also helps improve the efficiency of
evaluating each test. In each test, we need to obtain the
values of > o w, and Is, , both of which require more
than a constant computation time. However, by using the
fact that S, = S,,,—1 U {m}, we can incrementally obtain
these values and improve complexity.

Obtaining »_, g w, Is easy since it equals
Y onc S, Wn t W, and requires only one addition
operation given the value of ) ¢ w,. The
computation of Ig  is more complicated. Let gg, ()
be the probability that all packets in S,, are delivered
at or before time ¢, resulting in at least 7 — ¢ idle time
slots. Ig, , being the expected proportion of idle time
slots, is 1 3",., Prob(number of idle time slots> i) =

157! gs, (t). Consider the value of gs,, (t):

>

gs,, (t) =Prob(all packets in S,, are delivered by ¢)

= Z Prob(all packets in S,,_; are delivered by

1 T
Dw(S,m’)+D1(S7m’):wm/7;2]{3(2&) »
t=1 m’

g 1 1
> - — fs(t
TPm/ T ; ( )pm’
1 T
= (qm/ — fs t .
O = 250

What remains is to determine the value of Y ;_, fs(t).
Since S is a minimal infeasible subset, the set S\ {m}
is feasible. Let n be any policy that fulfills S \ {m}.
Consider the following policy n’ for S: Whenever there is
an undelivered packet for clients among S\ {m}, schedule
clients as n does. Client m is scheduled to transmit only
after packets for all other clients are delivered. Now, every
client in S\ {m} is fulfilled under this policy. However,
since S is not feasible, at least one client in S is not ful-
filled under any policy. Hence, client m is not fulfilled un-
der policy 7/, and so we have Prob(client m succeeds) <
gm. Further, since client m is given the least priority
under policy 7', we have Prob(client m succeeds) =
Prob(all packets in S are delivered) = 3", fs(t). This im-
plies >, fs(t) < gm. Inserting this in the inequality in the

=1
time ¢ — 4, and clients m takes ¢ time slots
to succeed)

B Z 95+ (t = D)[pm(1 = pm) 1.

Thus, the vector of [gg,, (¢)] is indeed the convolution of
the vectors of [gs,, ,(i)] and [p;, (1 — p,,)*~t], which can
be computed in O(7?) time by brute force, or O(7log7)
by using the Fast Fourier Transform algorithm.

A complete algorithm for deciding whether a set of
clients is feasible is given in Algorithm 1. The complexity
of the algorithm is O(N72) or O(NTlog7), depending on
the implementation of convolution.

It should be noted that Algorithm 1 assumes the clients
are sorted already. While sorting can require (N log N)
time in general, this operation can also be made more
efficient. In practice, clients often come into the system
one by one rather than in a group. Admission control can
hence be simplified as one of deciding whether the system
can accommodate a new client. In this case, the server
can keep a sorted list of the existing clients. When a new
client requests admission, the server inserts the new client
into the proper position in the list, and runs Algorithm



1. Since inserting a new client into the list takes O(V)
time, it remains O(N7?) or O(N7 log 7) time to determine
whether to admit a new client.

Algorithm 1 IsFeasible

: Assume clients are sorted so that ¢; > ¢ > ---
: totalWW «— 0
[gSo (Z)] — [Ov O’ e 70}
: form=1to N do
totalW « totalW + %
(95, ()] = [95,,_, ()] * [P (1 = i)~ ]
totall «— L3271 gs,. (i)
if totalW + totall > 1 then
return Infeasible
return Feasible

> qN

YN ah N

-
=4

VIII. IMPLEMENTATION ISSUES

In this section, we describe how to implement the
largest debt first policies under the IEEE 802.11 mech-
anisms. While our earlier problem formulation appears
to assume there is only traffic from clients to the server,
we explain how to modify the policies to deal with duplex
traffic.

A. Implementation on IEEE 802.11

The IEEE 802.11 standard provides two different chan-
nel access mechanisms, the mandatory Distributed Coor-
dination Function (DCF), and the optional Point Coordi-
nation Function (PCF) [6]. The PCF is a centralized access
mechanism proposed to support time-bounded services.
We will implement the largest debt first policies based on
the PCF mechanism.

In PCF, the transmissions of prioritized traffic are co-
ordinated by a station called the Point Coordinator (PC),
which is the server in our scheme. The PC grants channel
access to clients by sending a CF-POLL packet. The client
indicated by the CF-POLL packet then replies with a
Data packet if it has data to send, or a Null packet if
it doesn’t. To ensure that the PCF has a higher priority
over the DCF, the PC and the client indicated by the
CF-POLL transmit packets after detecting the channel as
being idle for a period of PCF Interframe Space (PIFS)
and Short Interframe Space (SIFS), respectively. The DCF,
on the other hand, starts the backoff process only after
the channel idles for a period of DCF Interframe Space
(DIFS). The values of PIFS and SIFS are 30 us and 10
us, respectively, while the value of DIFS is 40 us in
IEEE 802.11 b/g. Since PIFS and SIFS are smaller than
DIFS, PCF is guaranteed higher priority for accessing the
channel.

In our implementation, the server works as the PC in
PCF. It indicates which client should transmit according
to the chosen policy. Further, to eliminate the time needed
for the server to send an ACK, all clients send their packets
by broadcasting. Finally, since PCF can coexist with DCF,
the system can still accommodate traffic with no QoS
constraints.

B. Dealing with Duplex Traffic

In Section III, we have assumed that there is only uplink
traffic, that is, traffic from clients to the server, and no
downlink traffic, which goes from the server to clients. In
many applications, such as VoIP, this assumption doesn’t
hold. However, it is easy to modify our solution to deal
with duplex traffic.

When a client requests downlink traffic with QoS con-
straints, the server creates a pseudoclient. The scheduling
policies compute the debt owed to the pseudoclient and
its priority in each period, just as though it were a normal
client. When the pseudoclient is scheduled to transmit,
the server sends out a packet to the requesting client.
The packet is considered delivered if the server receives
an ACK from the client. In this case, the length of the
slot time is determined so that it is long enough for
both uplink traffic, which includes the CF-POLL packet
and the Data packet, and downlink traffic, which includes
the Data packet and the ACK. While the different times
required by uplink traffic and downlink traffic may cause
additional idle time in each time slot, this cost is in-
significant. The only difference between uplink traffic and
downlink traffic is that uplink traffic needs to transmit
the CF-POLL packet while the downlink traffic requires
an ACK packet. The CF-POLL packet only needs to specify
a receiver address to indicate which client is allowed to
transmit. Thus, the format of CF-POLL is essentially the
same as the format of ACK, and it takes approximately
equal time to transmit both packets. Hence, the time
required by uplink traffic is almost the same as that
required by downlink traffic.

IX. SIMULATION RESULTS

A. Simulation Setup

We follow the G.711 codec, which is a ITU-T standard
for audio compression, in deciding parameters for traffic
with QoS constraints. G.711 generates data at 64 kbps.
With a 20 ms packetization interval, this results in a 160
Bytes VoIP packet. We use IEEE 802.11b as the underlying
MAC protocol, whose transmission rate can be as high as
11 Mb/s. Some details of parameters are given in Table
I. Under this setting, the total transmission time for a CF-
POLL packet and a Data packet is slightly smaller than
610 ps, allowing 32 time slots in a 20 ms period. All the
results in the following sections are the average over 100
runs.

We have implemented the two largest debt first policies,
the largest time-based debt first policy and the largest
weighted-delivery debt first policy, on ns-2, and compared
them against the naive approach using IEEE 802.11 DCF.
To evaluate the performance of different mechanisms, we
define a deadline miss ratio (DMR) function. Let d,, be the
delivery ratio achieved by the client n at some given time.
The deadline miss ratio of client n is defined as

—dy, if g, > d,,

_ qn
DMRy, = { 0, otherwise,



and the deadline miss ratio of the system is defined as the
sum of the deadline miss ratios of all clients.

One may argue that the comparison between largest
debt policies and IEEE 802.11 DCF is not fair. By using
IEEE 802.11 PCF, our policies avoid additional overheads,
including the time spent on backing off and the risk of
packet collision, that are inevitable in DCF. To make the
comparison fair, we therefore also implement a random
policy, which is also based on PCF, that assigns priorities
randomly at the beginning of each period.

TABLE [: Simulation Setup

Packetization interval 20 ms
Payload size per packet | 160 Bytes
Transmission data rate 11 Mb/s
SIFS 10 us
PIFS 30 ps
DIFS 40 115

B. Simplex Traffic

We first consider the case where there is only up-
link traffic. We consider two groups of clients, group A
and group B. Clients in group A carry more important
messages and require a 99% delivery ratio, while clients
in group B require a 80% delivery ratio. The channel
reliability of the n** client in both groups is assumed to be
(60 + n)%. Using Algorithm 1, it can be shown that a set
of 11 group A clients and 12 group B clients is feasible,
but a set of 12 group A clients and 12 group B clients is
not.

We first run simulations of the four different policies,
namely, the two largest debt first policies, the random
policy based on PCF, and the DCF mechanism, on a set
of 12 group A clients and 11 group B clients. Figure
la presents the deadline miss ratios of different policies.
The deadline miss ratios of the two largest debt first
policies converge to zero over time, showing that both
policies fulfill the set of clients. The largest weighted-
delivery debt first policy has a better performance over
the largest time-based debt first policy since it converges
faster. This is because the largest weighted-delivery debt
first policy uses the feedback information of MAC to count
the actual number of packets delivered for each client.
This gives a better estimate on whether a client requires
more transmission opportunities. The largest time-based
debt first policy, on the other hand, uses the more indi-
rect approach by counting the number of times a client
transmits, which gives a slower convergence rate. While
the largest weighted-delivery debt first policy may require
a more complicated implementation, it is suitable for
applications where the short-term performance is also
important.

Both the other two policies do not satisfy all clients.
The deadline miss ratio of the random policy remains
approximately 1. The random policy cannot be feasibility
optimal since it gives each client equal priorities in the
long term, regardless of the required delivery ratio of each
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Fig. 1: Deadline miss ratios for simplex traffic

client. However, clients with more important data should
be granted more transmission opportunities than others.
Failing to take this factor into account makes the ran-
dom policy not feasibility optimal. Meanwhile, the DCF
mechanism has a much higher deadline miss ratio. This is
due to the lack of awareness of delay constraints in DCF.
When a client puts a packet in the transmission queue,
the packet cannot be removed until it is transmitted or
dropped by the MAC. Thus, when the packet generation
rate exceeds the packet outgoing rate, the queuing delay
gets even larger, resulting in a large deadline miss ratio.

To evaluate the accuracy of Algorithm 1, we run sim-
ulations on a set of 12 group A clients and 12 group
B clients, which is reported infeasible by Algorithm 1.
Figure 1b shows the results. It can be seen that all the four
policies offer non-zero deadline miss ratios, confirming
the infeasibility of this set. It can also be seen that, like
the case of a feasible set, the two largest debt first policies
result in the least deadline miss ratios. This result suggests
that our proposed policies still work well even when link
qualities are not high enough to satisfy the clients. Since
the link quality does vary with time in wireless networks,
it is likely that the network may suffer from temporary
link quality downgrades from time to time. The ability to
provide good service under these downgrades is essential
to the robustness of a system. In this case, our policies
appear to be robust.

C. Duplex Traffic

We next consider the case where clients generate du-
plex traffic. As in the previous section, we assume there
are two groups, A and B, of clients, who require 99% and
80% delivery ratio for both uplink and downlink traffic,
respectively. The channel reliability of the n*" client in
both groups is (60+n)%. Using Algorithm 1, we find that
a set of 6 group A clients and 5 group B clients is feasible,
while a set of 6 group A clients and 6 group B clients is
not.

We run simulations on the feasible set of 6 group A
clients and 5 group B clients. Figure 2a presents the
deadline miss ratios of the four policies. The results are
similar to those in the previous section, with the two
largest debt first policies having near-zero deadline miss
ratios, while the other two policies result in non-optimal
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Fig. 2: Deadline miss ratios for duplex traffic

performance. These results suggest that our proposed
policies remain feasibility optimal even when they are
applied to duplex traffic.

A somewhat surprising result is that the deadline miss
ratio of DCF, unlike that in the last section, levels off
quickly. This is caused by the different delays experi-
enced by uplink traffic and downlink traffic. When clients
request duplex traffic, each client only generates one
packet per period. The server, however, needs to generate
one packet for each client per period. Thus, the server
is much more heavily-loaded than the clients. However,
the DCF gives each wireless node equal transmission
opportunities, causing each client to get a more than
enough share of transmission time, with the server being
given an inadequately small transmission opportunity. A
closer look at the simulation data shows that the downlink
traffic contributes 3.82 to the deadline miss ratio while
the deadline miss ratio of uplink traffic is only 0.15,
confirming our reasoning.

As in the previous section, we also evaluate the per-
formance of the four tested policies on an infeasible set
of 6 group A clients and 6 group B clients. As shown
in Figure 2b, all policies fail to satisfy this set of clients,
suggesting that Algorithm 1 is also accurate for duplex
traffic. Further, the two proposed policies result in the
least deadline miss ratios, showing that they are robust
against temporary downgrades of link qualities.

A final remark is that the random policy is always better
than DCF in all simulation settings. This shows that the
additional overheads of DCF, including the time spent on
backing off and the imbalance of uplink and downlink
delay, can hurt the performance of a system greatly. Since
PCF can coexist with DCF, it seems preferable to use PCF
for traffic with QoS constraints while other traffic can still
be served by DCF.

X. CONCLUDING REMARKS

We have studied the problem of providing QoS on
unreliable wireless networks. The QoS constraints are
expressed in terms of a delay bound, which is the same
as the period of packet arrivals, and a user-defined de-
livery ratio lower bound. We have analytically proved a
necessary and sufficient condition for a set of clients to
be feasible. Based on this condition, we have proposed

a linear time algorithm for admission control. We have
also designed two scheduling policies for traffic with
QoS constraints. We have proved that both policies are
feasibility optimal. We have shown that these policies
are easily implementable on the widely-used IEEE 802.11
mechanisms. Finally, simulation results for various scenar-
ios have been provided. Our theoretical studies are con-
firmed since the two proposed policies are indeed feasible
for all feasible sets of clients tested. Even when dealing
with infeasible sets of clients, our proposed policies still

outperformed others.

The model introduced in this paper is restrictive in
some aspects. For example, it is assumed that all clients
generate packets at the same rate and the delay require-
ments are the same for all packets. How to extend the
model for more complicated and realistic scenarios is an
interesting topic for future research.
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