Coding for Interactive Communication

Mohsen Ghaffari (MIT),

Bernhard Haeupler (MSR, SVC), and Madhu Sudan (MSR, NE)

Interactive Communication

One-way communication: one party wants to send a msg to the other.

Two-way (interactive) communication:

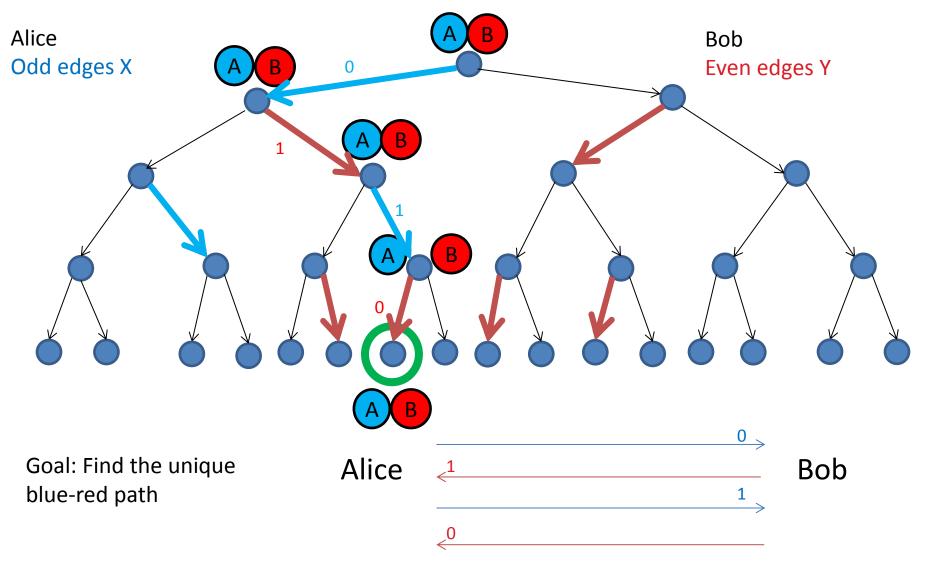
Alice gets $x \in \{0,1\}^k$, Bob gets $y \in \{0,1\}^k$ Compute f(x,y) via many back-and-forth msg exchanges

Coding for interactive communication

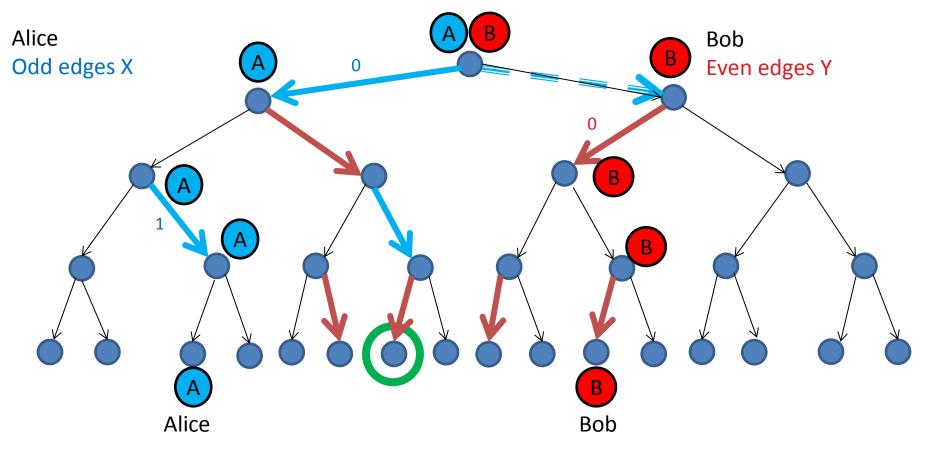
 Π : an n-round protocol for the noiseless setting

 Π' : an N-round protocol that simulates Π even if ρN transmissions are changed.

Pointer Jumping



Pointer Jumping with (adversarial) errors



undetected error \rightarrow Alice and Bob follow different parts of the tree.

Standard Error-Correcting Codes are not sufficient

What's known? (adversarial error)

Focus: Tolerable Error-Rate

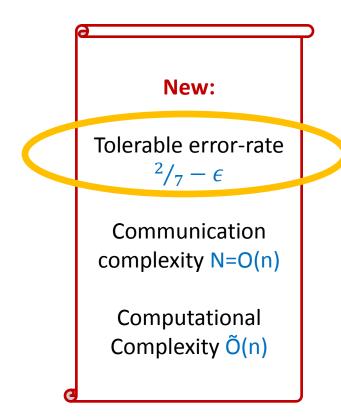
Schulman FOCS'92, STOC'93: $\frac{1}{_{240}} - \epsilon$ N=O(n) communication rounds, exp(n) computation

> Braverman & Rao STOC'11: $\frac{1}{4} - \epsilon$ N=O(n) communication rounds, exp(n) computation

Other measures: communication complexity & computational complexity

> Brakerski & Kalai FOCS'12: $\frac{1}{16} - \epsilon$, N=O(n) communication rounds, $\tilde{O}(n^2)$ computation

➢ Brakerski & Naor SODA'13: unspecified ⊖(1),
 N=O(n) rounds, O(n log n) computation

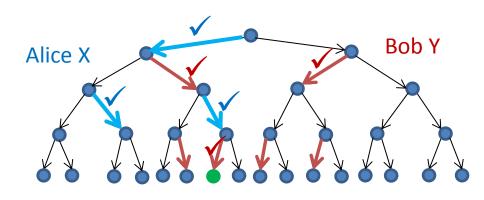


Tolerating error-rate $1/4 - \epsilon$

Take $N=O(n/\epsilon)$ rounds

Alice $E_A \subseteq X$, Bob $E_B \subseteq Y$

Grow E_A and E_B one edge at a time.



Alice's Alg.

<u>Sending round</u>: send one symbol indicating the whole E_A using large O(n)-bit size alph. \rightarrow remedy: tree-codes

<u>Receiving round</u>: receive E'_B ; ignore if it looks "invalid".

If $E_A \cup E'_B$ ends at a leaf v, add one vote to v.

Otherwise, if $E_A \cup E'_B$ can be extended along X via an edge e, let $E_A = E_A \cup \{e\}$.

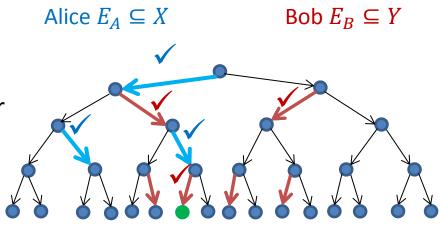
Tolerating error-rate $1/4 - \epsilon$

<u>Sending round</u>: send a one-symbol encoding of (the whole) E_A <u>Receiving round</u>: suppose received E'_B ; ignore if it looks "invalid". If $E_A \cup E'_B$ ends at a leaf v, add one vote to v. Otherwise, if $E_A \cup E'_B$ can be extended along X with edge e, let $E_A = E_A \cup \{e\}$.

Analysis:

Two consecutive **uncorrupted** rounds

- (1) the common path in $E_A \cup E_B$ grows, or
- (2) both Alice and Bob add one vote to the correct leaf



At most N/2 (1/2-2 ϵ) bad pairs \rightarrow at least N/2 (1/2+2 ϵ) good pairs At most n \leq N ϵ good pairs for growing \rightarrow at least N/2 (1/2+ ϵ) good votes.

Why 1/4 seems best possible?

Exchange problem:

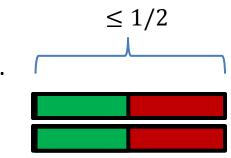
Alice gets $x \in \{0,1\}$, Bob gets $y \in \{0,1\}$. Learn the other one's input.

Adversary:

- Take the party that sends less than ½ of the time, say Alice.
- Change ½ of Alice's transmissions.
- Bob cannot distinguish whether Alice has 0 or 1.

<u>Catch</u>: Assumes the party who sends less than ½ is fixed (independent of errors) True if non-adaptive.

Non-adaptive: it's fixed a priori who sends in each round.



x=0

x=1

Adaptivity

Adaptivity let's us improve the tolerable error-rate to $2/7 - \epsilon$.

```
Exchange prob.: Alice gets x \in \{0,1\}, Bob gets y \in \{0,1\}.
Learn the other one's input.
```

```
Use N =7R rounds, R=O(1/\epsilon).
```

Part 1: 6R rounds, non-adaptive

Alice sends in odd rounds, Bob in even rounds, each 3R times.

Part 2: R rounds, one adaptive decision

If among the 3R receptions in the first part, at least 2R rounds say 0 (or at least 2R rounds say 1), it is correct ("safe"); then just send. Otherwise, just listen.

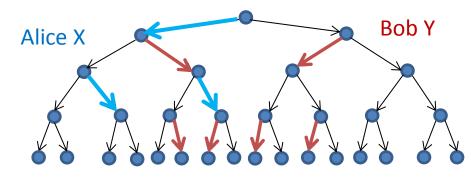
At least one party will decode safely in the first part Only one party will listen in the last R rounds. R rounds adaptive

6R rounds

non-adaptive

Tolerating error-rate 2/7 - ϵ Adaptively

Take N=7R rounds, for R=O(n/ ϵ) Alice keeps $E_A \subseteq X$, Bob keeps $E_B \subseteq Y$



Alice's Algorithm:

Part 1: 6R rounds, non-adaptive -- send in odd rounds, listen in even rounds

<u>Sending round</u>: send a one-symbol indicating E_A

<u>Receiving round</u>: suppose received E'_B ; ignore if it looks "invalid".

If $E_A \cup E'_B$ ends at a leaf v, add one vote to v.

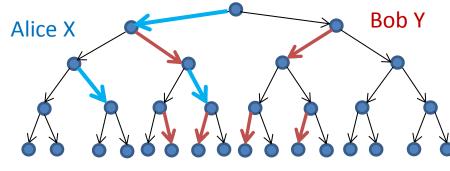
Otherwise, if $E_A \cup E'_B$ can be extended along X via an edge e, let $E_A = E_A \cup \{e\}$.

Part 2: R rounds, one adaptive decision

If there is a leaf that has all except R votes, "safe" to decode \rightarrow always send E_A Otherwise, always listen. Each round add a vote to the leaf at the end of $E_A \cup E'_B$

Tolerating error-rate $2/7 - \epsilon$ Adaptively

N=7R rounds, for R=O(n/ ϵ)



Part 2: R rounds, one adaptive decision:

If there is a leaf that has <u>all except R votes</u>, "safe" \rightarrow always send E_A

Otherwise, always listen. Each round add a vote to the leaf at the end of $E_A \cup E'_B$

Analysis:

- ➤ "Safe" is indeed safe.
- > At least one party is safe \rightarrow at most one listens.
- > The listening party will also decode correctly.

Tolerating error-rate 2/7 - ϵ Adaptively

So far, N=O(n) rounds with alph. size O(n) bits

Moving to O(1) alphabet size

❖ Send over edge sets E_A and E_B with (1- ϵ)-distance ECC using O(n) symbols
 ❖ List decode on the receiver side, add all results to the edge set
 ❖ For voting, do a soft decoding

A code for error-rate 2/7- ϵ , comm. comp. N=O(n²) rounds with alph. size O(1), and comput. comp. $\tilde{O}(n^2)$.

Model Subtlety with Adaptivity

What's received when parties both listen or send in one round?

✓ A sending party does not receive anything.

Both listening is subtle: If both receive silence, they have an <u>uncorrupted</u> <u>communication medium</u>.

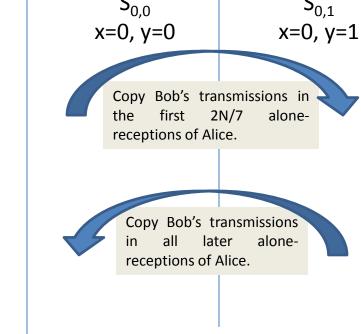
In the non-adaptive setting, avoided by design: no alg. should let both listen. In adaptive, it happens unavoidably.

Fix: let the adversary decide what's received when both parties listen. Prevents info. exchange in such rounds

Optimality of 2/7

Take any protocol, say it uses N rounds. S_{1,0} S_{0,0} x=0, y=0 x=1, y=0 Special scenario: whenever have 0, first Copy 2N/7 alone-receptions will look as if the 2N/7 the first receptions of Alice. other party has 0, the later alonereceptions look as if the other party has 1.

Let x_A and x_B respectively be the number of receptions of Alice and Bob when they are (each) in the *special* scenario.



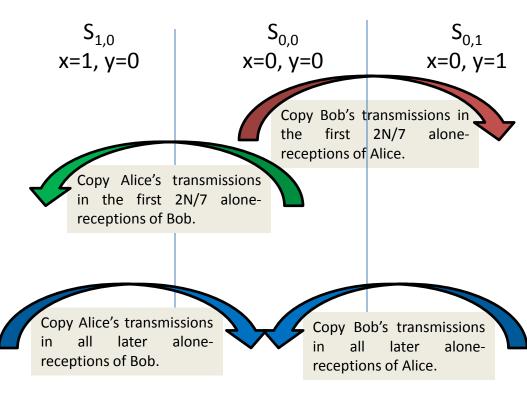
If $x_A \leq \frac{4N}{7}$, trick Alice. First 2N/7 alone-receptions, copy Bob's transmissions from S_{0,0} to S_{0,1}. Remaining alone-receptions, copy Bob's transmission from $S_{0,1}$ to $S_{0,0}$.

If $x_B \leq \frac{4N}{7}$, do the same trick on Bob.

Optimality of 2/7

<u>Special scenario</u>: whenever have 0, first 2N/7 alone-receptions will look as if the other party has 0, the later alone-receptions look as if the other party has 1.

Let x_A and x_B respectively be the number of receptions of Alice and Bob when they are (each) in the *special* scenario.



If $x_A > \frac{4N}{7}$ and $x_B > \frac{4N}{7} \rightarrow$ at least N/7 overlap \rightarrow each have less than 3N/7 alone reception, trick both, Alice between S_{0,0} and S_{0,1} and Bob between S_{0,0} to S_{1,0}

Conclusion & Open Problems

✓ 2/7 is the optimal (sharp) threshold on the tolerable error-rate .
✓ 2/3 is the optimal threshold if parties have (hidden) shared randomness,
✓ 1/2 is the optimal threshold if parties want to just list decode.

Newer results:

Optimal tolerable error-rates, N=O(n) comm. rounds, and comput. comp. $\tilde{O}(n)$. Randomized with fail. prob. $2^{-\Theta(n)}$.

Open questions:

(1) Explicit deterministic construction? The above randomized code also gives a non-uniform deterministic version.(2) Optimal communication complexity/rate for each error-rate?

