Learning Algebraic Functions From a Few Samples

Michael Forbes

MIT

Based on joint works with Amir Shpilka

April 28, 2014

1/17

<ロト < 部 > < 言 > < 言 > こ その Q () 2/17

<ロト <回 > < 臣 > < 臣 > < 臣 > 三 の Q (C) 2/17

$$f(x,y) := x/y$$

<ロト <回 > < E > < E > E の Q (* 2/17

$$f(x,y) := x/y$$

Examples:

$$f(x,y) := x/y$$

Examples: • f(1,1) = 1

$$f(x,y) := x/y$$

2/17

Examples: • f(1,1) = 1 = f(2,2)

$$f(x,y) := x/y$$

2/17

Examples:

f(1,1) = 1 = f(2,2)
f(1,2) = 1/2

$$f(x,y) := x/y$$

2/17

Examples:

- f(1,1) = 1 = f(2,2)
- $f(1,2) = \frac{1}{2}$
- f(2,1) = 2

$$f(x,y) := x/y$$

Examples:

- f(1,1) = 1 = f(2,2)
- $f(1,2) = \frac{1}{2}$
- f(2,1) = 2

Claim

Now you know long division.

$$f(x,y) := x/y$$

Examples:

- f(1,1) = 1 = f(2,2)
- $f(1,2) = \frac{1}{2}$
- f(2,1) = 2

Claim

Now you know long division.

$$f(x,y) := x/y$$

Examples:

- f(1,1) = 1 = f(2,2)
- $f(1,2) = \frac{1}{2}$

•
$$f(2,1) = 2$$

Claim

Now you know long division.

Proof.

f(x, y) = x/y is the uniquely determined by the above,

$$f(x,y) := x/y$$

Examples:

- f(1,1) = 1 = f(2,2)
- $f(1,2) = \frac{1}{2}$

•
$$f(2,1) = 2$$

Claim

Now you know long division.

Proof.

f(x, y) = x/y is the uniquely determined by the above, as a function of the form f(x, y) = (ax + b)/(cy + d).

Theme

Simple functions are essentially determined by sufficiently many random samples.

イロン イボン イモン イモン 一日

3/17

Simple functions are essentially determined by sufficiently many random samples.

Simple functions are essentially determined by sufficiently many random samples.

Example

• PAC (Probably Approximately Correct) learning

Simple functions are essentially determined by sufficiently many random samples.

- PAC (Probably Approximately Correct) learning
- Error-correcting Codes

Simple functions are essentially determined by sufficiently many random samples.

- PAC (Probably Approximately Correct) learning
- Error-correcting Codes
- (Black-box) Polynomial Identity Testing (PIT)

Simple functions are essentially determined by sufficiently many random samples.

- PAC (Probably Approximately Correct) learning
- Error-correcting Codes
- (Black-box) Polynomial Identity Testing (PIT) given an algebraic circuit *C*

Simple functions are essentially determined by sufficiently many random samples.

- PAC (Probably Approximately Correct) learning
- Error-correcting Codes
- (Black-box) Polynomial Identity Testing (PIT) given an algebraic circuit C, does the polynomial C(x) equal zero?

More on the Theme

<ロト <回 > < 注 > < 注 > < 注 > 注 の Q (~ 4/17

Simple functions are essentially samples.

determined by random

<ロ > < 部 > < 注 > < 注 > 注 の Q @ 4/17

Simple functions are essentially **efficiently** determined by random samples.

Simple functions are essentially **efficiently** determined by **deterministic** samples.

イロン イボン イモン イモン 一日

4/17

Simple functions are essentially **efficiently** determined by **deterministic** samples.

Simple functions are essentially **efficiently** determined by **deterministic** samples.

Example (of hope)

• Coding theory:

Simple functions are essentially **efficiently** determined by **deterministic** samples.

Example (of hope)

• Coding theory: need **deterministic** coding schemes for communication

Simple functions are essentially **efficiently** determined by **deterministic** samples.

4/17

- Coding theory: need **deterministic** coding schemes for communication
- Complexity theory:

Simple functions are essentially **efficiently** determined by **deterministic** samples.

- Coding theory: need **deterministic** coding schemes for communication
- Complexity theory: understanding the power of (pseudo)randomness

Simple functions are essentially **efficiently** determined by **deterministic** samples.

- Coding theory: need **deterministic** coding schemes for communication
- Complexity theory: understanding the power of (pseudo)randomness
- Complexity theory:

Simple functions are essentially **efficiently** determined by **deterministic** samples.

- Coding theory: need **deterministic** coding schemes for communication
- Complexity theory: understanding the power of (pseudo)randomness
- Complexity theory: connections with circuit lower bounds

<ロト < 部 > < 言 > < 言 > こ そ へ へ へ つ く つ く つ く つ り く 17

Bilinear Forms

Let ${\mathbb F}$ be a field.

<ロト < 部ト < 注ト < 注ト こま の Q () 5/17
Bilinear Forms

Bilinear Forms

Let ${\mathbb F}$ be a field.

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix.

$$f(\vec{x},\vec{y}) := \vec{x}^t M \vec{y}$$

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

(日) (图) (E) (E) (E)

7/17

Question

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

Question

How many queries to f

<ロ > < 回 > < 三 > < 三 > < 三 > 三 の Q () 7/17

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

Question

How many queries to f do we need to determine if $f \equiv 0$?

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

イロト 不得 トイヨト イヨト

3

7/17

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

7/17

Answer

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

イロト 不得 トイヨト イヨト

3

Answer

n² are sufficient

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

イロト 不得 トイヨト イヨト

Answer

 n^2 are sufficient, as $f(\vec{e_i}, \vec{e_j}) = M_{i,j}$.

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

Answer

$$n^2$$
 are sufficient, as $f(\vec{e_i}, \vec{e_j}) = M_{i,j}$.

Answer

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

Answer

$$n^2$$
 are sufficient, as $f(\vec{e_i}, \vec{e_j}) = M_{i,j}$.

Answer

n² are necessary

$$f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

Answer

$$n^2$$
 are sufficient, as $f(\vec{e_i}, \vec{e_j}) = M_{i,j}$.

Answer

 n^2 are necessary, by counting.

<ロト < 部 > < 注 > < 注 > 注) < ご > ? へ (~ 8/17

Let ${\mathbb F}$ be a field.

<ロト < 部ト < 注ト < 注ト 注 の Q () 8/17

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$.

<ロト < 回 ト < 三 ト < 三 ト < 三 ト 三 の へ () 8/17

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y}$

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Question

How many queries to f do we need to determine if $f \equiv 0$?

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

イロト 不得下 イヨト イヨト 二日

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

8/17

Answer

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

Answer

pprox 2nr (resp. pprox 4nr) are sufficient

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

Answer

 $\approx 2nr$ (resp. $\approx 4nr)$ are sufficient, by the probabilistic method and Schwartz-Zippel

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

イロト 不得 トイヨト イヨト

Answer

 $\approx 2nr$ (resp. $\approx 4nr)$ are sufficient, by the probabilistic method and Schwartz-Zippel

Answer

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

イロト イポト イヨト イヨト

Answer

 $\approx 2nr$ (resp. $\approx 4nr)$ are sufficient, by the probabilistic method and Schwartz-Zippel

Answer

 $\Theta(nr)$ are necessary

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

Answer

 $\approx 2nr~(resp.\approx 4nr)$ are sufficient, by the probabilistic method and Schwartz-Zippel

Answer

 $\Theta(nr)$ are necessary, by counting.

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

Answer

 $\approx 2nr~(resp.\approx 4nr)$ are sufficient, by the probabilistic method and Schwartz-Zippel

Answer

 $\Theta(nr)$ are necessary, by counting.

Question

Let \mathbb{F} be a field. Let M be an $n \times n$ matrix of rank $\leq r$. Define $f : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$ by $f(\vec{x}, \vec{y}) := \vec{x}^t M \vec{y} = \langle M, \vec{x}^t \vec{y} \rangle$

Question

How many queries to f do we need to determine if $f \equiv 0$? To learn M?

Answer

 $\approx 2nr~(resp.\approx 4nr)$ are sufficient, by the probabilistic method and Schwartz-Zippel

Answer

 $\Theta(nr)$ are necessary, by counting.

Question

Can we construct $\approx 2nr$ (resp. 4nr) **explicit** samples for identity testing (resp. learning)?

Results

<ロト < 部 > < 言 > < 言 > こ うへで 9/17

Definition

<ロト < 部ト < 注ト < 注ト 注 の Q (~ 9/17

Results

Definition

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector.

Definition

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A measurement of \vec{x}

Results

Definition

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A **measurement of** \vec{x} is an inner product $\langle \vec{a}, \vec{x} \rangle$ for some known vector $\vec{a} \in \mathbb{F}^n$.

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A **measurement of** \vec{x} is an inner product $\langle \vec{a}, \vec{x} \rangle$ for some known vector $\vec{a} \in \mathbb{F}^n$. A measurement of an unknown matrix M is an inner product in the space \mathbb{F}^{n^2} .

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A **measurement of** \vec{x} is an inner product $\langle \vec{a}, \vec{x} \rangle$ for some known vector $\vec{a} \in \mathbb{F}^n$. A measurement of an unknown matrix M is an inner product in the space \mathbb{F}^{n^2} . A measurement $\langle A, M \rangle$ of the matrix M is **rank 1** if A is rank 1.

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A **measurement of** \vec{x} is an inner product $\langle \vec{a}, \vec{x} \rangle$ for some known vector $\vec{a} \in \mathbb{F}^n$. A measurement of an unknown matrix M is an inner product in the space \mathbb{F}^{n^2} . A measurement $\langle A, M \rangle$ of the matrix M is **rank 1** if A is rank 1.

Thus, evaluations to the bilinear form $f(\vec{x}, \vec{y}) = \vec{x}^t M \vec{y} = \langle \vec{x}^t \vec{y}, M \rangle$ are all rank-1 measurements of M.

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A **measurement of** \vec{x} is an inner product $\langle \vec{a}, \vec{x} \rangle$ for some known vector $\vec{a} \in \mathbb{F}^n$. A measurement of an unknown matrix M is an inner product in the space \mathbb{F}^{n^2} . A measurement $\langle A, M \rangle$ of the matrix M is **rank 1** if A is rank 1.

Thus, evaluations to the bilinear form $f(\vec{x}, \vec{y}) = \vec{x}^t M \vec{y} = \langle \vec{x}^t \vec{y}, M \rangle$ are all rank-1 measurements of M.

イロン スピン スヨン スヨン 三日

Theorem

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A **measurement of** \vec{x} is an inner product $\langle \vec{a}, \vec{x} \rangle$ for some known vector $\vec{a} \in \mathbb{F}^n$. A measurement of an unknown matrix M is an inner product in the space \mathbb{F}^{n^2} . A measurement $\langle A, M \rangle$ of the matrix M is **rank 1** if A is rank 1.

Thus, evaluations to the bilinear form $f(\vec{x}, \vec{y}) = \vec{x}^t M \vec{y} = \langle \vec{x}^t \vec{y}, M \rangle$ are all rank-1 measurements of M.

Theorem

Over large fields, one can efficiently learn an $n \times n$ matrix of rank $\leq r$ with 4nr measurements

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A **measurement of** \vec{x} is an inner product $\langle \vec{a}, \vec{x} \rangle$ for some known vector $\vec{a} \in \mathbb{F}^n$. A measurement of an unknown matrix M is an inner product in the space \mathbb{F}^{n^2} . A measurement $\langle A, M \rangle$ of the matrix M is **rank 1** if A is rank 1.

Thus, evaluations to the bilinear form $f(\vec{x}, \vec{y}) = \vec{x}^t M \vec{y} = \langle \vec{x}^t \vec{y}, M \rangle$ are all rank-1 measurements of M.

Theorem

Over large fields, one can efficiently learn an $n \times n$ matrix of rank $\leq r$ with 4nr measurements and can even be done with rank-1 measurements.

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A **measurement of** \vec{x} is an inner product $\langle \vec{a}, \vec{x} \rangle$ for some known vector $\vec{a} \in \mathbb{F}^n$. A measurement of an unknown matrix M is an inner product in the space \mathbb{F}^{n^2} . A measurement $\langle A, M \rangle$ of the matrix M is **rank 1** if A is rank 1.

Thus, evaluations to the bilinear form $f(\vec{x}, \vec{y}) = \vec{x}^t M \vec{y} = \langle \vec{x}^t \vec{y}, M \rangle$ are all rank-1 measurements of M.

Theorem

Over large fields, one can efficiently learn an $n \times n$ matrix of rank $\leq r$ with 4nr measurements and can even be done with rank-1 measurements.

The number of measurements is optimal over algebraically closed fields.

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A **measurement of** \vec{x} is an inner product $\langle \vec{a}, \vec{x} \rangle$ for some known vector $\vec{a} \in \mathbb{F}^n$. A measurement of an unknown matrix M is an inner product in the space \mathbb{F}^{n^2} . A measurement $\langle A, M \rangle$ of the matrix M is **rank 1** if A is rank 1.

Thus, evaluations to the bilinear form $f(\vec{x}, \vec{y}) = \vec{x}^t M \vec{y} = \langle \vec{x}^t \vec{y}, M \rangle$ are all rank-1 measurements of M.

Theorem

Over large fields, one can efficiently learn an $n \times n$ matrix of rank $\leq r$ with 4nr measurements and can even be done with rank-1 measurements.

The number of measurements is optimal over algebraically closed fields. The use of rank-1 measurements is novel

Let $\vec{x} \in \mathbb{F}^n$ be an unknown vector. A **measurement of** \vec{x} is an inner product $\langle \vec{a}, \vec{x} \rangle$ for some known vector $\vec{a} \in \mathbb{F}^n$. A measurement of an unknown matrix M is an inner product in the space \mathbb{F}^{n^2} . A measurement $\langle A, M \rangle$ of the matrix M is **rank 1** if A is rank 1.

Thus, evaluations to the bilinear form $f(\vec{x}, \vec{y}) = \vec{x}^t M \vec{y} = \langle \vec{x}^t \vec{y}, M \rangle$ are all rank-1 measurements of M.

Theorem

Over large fields, one can efficiently learn an $n \times n$ matrix of rank $\leq r$ with 4nr measurements and can even be done with rank-1 measurements.

The number of measurements is optimal over algebraically closed fields. The use of rank-1 measurements is novel, and thus instantiates the meta-hope, by learning a function from deterministic evaluations.

<ロト < 合 > < 言 > < 言 > こ き < こ > こ ? へ (~ 10/17

Definition (Tensor)

• A tensor is a higher dimensional matrix in $[n]^d$.

- A tensor is a higher dimensional matrix in $[n]^d$.
- Tensors have a rank,

- A tensor is a higher dimensional matrix in $[n]^d$.
- Tensors have a **rank**, *dnr* parameters for tensors of rank *r*,

- A tensor is a higher dimensional matrix in $[n]^d$.
- Tensors have a **rank**, *dnr* parameters for tensors of rank *r*, but *n^d* in general.

- A tensor is a higher dimensional matrix in $[n]^d$.
- Tensors have a **rank**, *dnr* parameters for tensors of rank *r*, but *n^d* in general.
- Tensors define a *d*-linear form,

- A tensor is a higher dimensional matrix in $[n]^d$.
- Tensors have a **rank**, *dnr* parameters for tensors of rank *r*, but *n^d* in general.
- Tensors define a *d*-linear form, evaluating that form is a rank-1 measurement of the tensor.

- A tensor is a higher dimensional matrix in $[n]^d$.
- Tensors have a **rank**, *dnr* parameters for tensors of rank *r*, but *n^d* in general.

イロト イポト イヨト イヨト

• Tensors define a *d*-linear form, evaluating that form is a rank-1 measurement of the tensor.

Theorem

- A tensor is a higher dimensional matrix in $[n]^d$.
- Tensors have a **rank**, *dnr* parameters for tensors of rank *r*, but *n^d* in general.
- Tensors define a *d*-linear form, evaluating that form is a rank-1 measurement of the tensor.

Theorem

There is a deterministic $poly(n, r, d)^{\log d}$ -time algorithm that reconstructs rank r tensors in $[n]^d$ from evaluations of their d-linear forms.

- A tensor is a higher dimensional matrix in $[n]^d$.
- Tensors have a **rank**, *dnr* parameters for tensors of rank *r*, but *n^d* in general.
- Tensors define a *d*-linear form, evaluating that form is a rank-1 measurement of the tensor.

Theorem

There is a deterministic $poly(n, r, d)^{\log d}$ -time algorithm that reconstructs rank r tensors in $[n]^d$ from evaluations of their d-linear forms.

This is the *first* deterministic sub-exponential time algorithm for even determining if the d-linear form is non-zero,

- A tensor is a higher dimensional matrix in $[n]^d$.
- Tensors have a **rank**, *dnr* parameters for tensors of rank *r*, but *n^d* in general.
- Tensors define a *d*-linear form, evaluating that form is a rank-1 measurement of the tensor.

Theorem

There is a deterministic $poly(n, r, d)^{\log d}$ -time algorithm that reconstructs rank r tensors in $[n]^d$ from evaluations of their d-linear forms.

This is the *first* deterministic sub-exponential time algorithm for even determining if the d-linear form is non-zero, by only using its evaluations.

Any r-sparse-recovery oracle with measurements $\mathcal V$

<ロ > < 部 > < E > < E > E の Q @ 11/17

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H}

イロト イポト イヨト イヨト

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

An *r*-sparse-recovery oracle is simply an error-correcting-code with that can correct *r* errors (thus, distance 2r)

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

An *r*-sparse-recovery oracle is simply an error-correcting-code with that can correct r errors (thus, distance 2r)

 \implies take the Reed-Solomon code with 2r measurements (for large fields).

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

An *r*-sparse-recovery oracle is simply an error-correcting-code with that can correct r errors (thus, distance 2r)

 \implies take the Reed-Solomon code with 2r measurements (for large fields).

イロト 不得下 イヨト イヨト 三日

 \implies get $2n \cdot 2r = 4nr$ measurements

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

An *r*-sparse-recovery oracle is simply an error-correcting-code with that can correct r errors (thus, distance 2r)

 \implies take the Reed-Solomon code with 2r measurements (for large fields).

 \implies get $2n \cdot 2r = 4nr$ measurements

rank 1 measurements:

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

An *r*-sparse-recovery oracle is simply an error-correcting-code with that can correct r errors (thus, distance 2r)

 \implies take the Reed-Solomon code with 2r measurements (for large fields).

 \implies get $2n \cdot 2r = 4nr$ measurements

rank 1 measurements: do a clever change of basis from \mathcal{H} to \mathcal{H}'

Sparsity and Rank (I)

want: *M* has rank $\leq r$

want: *M* has rank $\leq r \implies$ related *r* sparse vector.

want: *M* has rank $\leq r \implies$ related *r* sparse vector. **hope:**
want: *M* has rank $\leq r \implies$ related *r* sparse vector. **hope:** some row or column of *M* is sparse.

want: *M* has rank $\leq r \implies$ related *r* sparse vector. **hope:** some row or column of *M* is sparse. (false) want: *M* has rank $\leq r \implies$ related *r* sparse vector. hope: some row or column of *M* is sparse. (false) a new hope:

Definition

Definition

Let *M* be $n \times n$.

Definition

Let *M* be $n \times n$. The *k*-diagonal of *M* are the entries $\{M_{i,j}\}_{i+j=k}$.

Definition

Let *M* be $n \times n$. The *k*-diagonal of *M* are the entries $\{M_{i,j}\}_{i+j=k}$.

イロン イボン イモン イモン 一日

Lemma

Definition

Let *M* be $n \times n$. The *k*-diagonal of *M* are the entries $\{M_{i,j}\}_{i+j=k}$.

イロン イボン イモン イモン 一日

Lemma

Let *M* be $n \times n$, of rank $\leq r$.

Definition

Let *M* be $n \times n$. The *k*-diagonal of *M* are the entries $\{M_{i,j}\}_{i+j=k}$.

Lemma

Let M be $n \times n$, of rank $\leq r$. The first non-zero diagonal is r-sparse.

<ロト < 部ト < 注ト < 注ト 注 の Q (~ 13/17

Lemma

Lemma

Let M be $n \times n$, of rank $\leq r$. The first non-zero diagonal is r-sparse.

Lemma

Let M be $n \times n$, of rank $\leq r$. The first non-zero diagonal is r-sparse.

Proof by example.

Lemma

Let M be $n \times n$, of rank $\leq r$. The first non-zero diagonal is r-sparse.

Proof by example.

Lemma

Let M be $n \times n$, of rank $\leq r$. The first non-zero diagonal is r-sparse.

Proof by example.

The rows with non-zeros amongst the entries a, b, c, d, eare linearly independent

Lemma

Let M be $n \times n$, of rank $\leq r$. The first non-zero diagonal is r-sparse.

Proof by example.

The rows with non-zeros amongst the entries a, b, c, d, eare linearly independent, as this is a triangular system

Lemma

Let M be $n \times n$, of rank $\leq r$. The first non-zero diagonal is r-sparse.

Proof by example.

The rows with non-zeros amongst the entries a, b, c, d, eare linearly independent, as this is a triangular system, so this follows from standard linear algebra.

Lemma

Let M be $n \times n$, of rank $\leq r$. The first non-zero diagonal is r-sparse.

Proof by example.

The rows with non-zeros amongst the entries a, b, c, d, eare linearly independent, as this is a triangular system, so this follows from standard linear algebra. So if the rank is at most 3,

Lemma

Let M be $n \times n$, of rank $\leq r$. The first non-zero diagonal is r-sparse.

Proof by example.

The rows with non-zeros amongst the entries a, b, c, d, eare linearly independent, as this is a triangular system, so this follows from standard linear algebra. So if the rank is at most 3, then this diagonal is 3-sparse.

Learning an 7×7 , rank ≤ 3 matrix, essentially using 3-sparse recovery:

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

14/17

^{14/17}

^{14/17}

Learning an 7 \times 7, rank \leq 3 matrix, essentially using 3-sparse recovery:

14/17

Learning an 7×7 , rank ≤ 3 matrix, essentially using 3-sparse recovery:

14/17
Learning an 7×7 , rank ≤ 3 matrix, essentially using 3-sparse recovery:

^{14 / 17}

Learning an 7 \times 7, rank \leq 3 matrix, essentially using 3-sparse recovery:

Learning an 7×7 , rank ≤ 3 matrix, essentially using 3-sparse recovery:

Learning an 7 \times 7, rank \leq 3 matrix, essentially using 3-sparse recovery:

Learning an 7 \times 7, rank \leq 3 matrix, essentially using 3-sparse recovery:

Learning an 7×7 , rank ≤ 3 matrix, essentially using 3-sparse recovery:

Learning an 7×7 , rank ≤ 3 matrix, essentially using 3-sparse recovery:

Learning an 7×7 , rank ≤ 3 matrix, essentially using 3-sparse recovery:

0	0	0	0	0	0	0		
0	0	0	1	1	1	1		
0	0	1	1	0	0	1		
0	1	1	1	0	1	1		
0	1	2	3	1	2	3		
0	1	2	3	1	2	3		
0	1	2	3	1	2	3		
Γ0	0	0	0	0		0	07	
Г0 0	0 0	0 0	0 1	0 1		0 1	0 1	
0 0 0	0 0 0	0 0 1	0 1 0	0 1 	L	0 1 -1	0 1 0	
0 0 0 0	0 0 0 1	0 0 1 0	0 1 0 0	0 1 	1	$0 \\ 1 \\ -1 \\ 1$	0 1 0 0	(
0 0 0 0	0 0 1 0	0 0 1 0	0 1 0 0	0 1 0 0	L	0 1 -1 1 0	0 1 0 0 0	()
0 0 0 0 0	0 0 1 0 0	0 0 1 0 0	0 1 0 0 0	0 1 	L	0 1 -1 1 0 0	0 1 0 0 0 0	
0 0 0 0 0 0	0 0 1 0 0 0	0 1 0 0 0 0	0 1 0 0 0 0 0	0 1 	L	$egin{array}{c} 0 \\ 1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 1 0 0 0 0 0	0 1 3 (

Learning an 7×7 , rank ≤ 3 matrix, essentially using 3-sparse recovery:

0	0	0	0	0	0	0	
0	0	0	1	1	1	1	
0	0	1	1	0	0	1	
0	1	1	1	0	1	1	
0	1	2	3	1	2	3	
0	1	2	3	1	2	3	
0	1	2	3	1	2	3	
Γ0	0	0	0	0		0	07
ГО 0	0 0	0 0	0 1	0 1		0 1	0 1
0 0 0	0 0 0	0 0 1	0 1 0	0 1 	1	0 1 -1	0 1 0
0 0 0	0 0 0 1	0 0 1 0	0 1 0 0	0 1 	1	$0 \\ 1 \\ -1 \\ 1$	0 1 0 0
0 0 0 0	0 0 1 0	0 0 1 0	0 1 0 0	0 1 0 0	1	0 1 -1 1 0	0 1 0 0 0
0 0 0 0 0	0 0 1 0	0 0 1 0 0	0 1 0 0 0	0 1 	1	$0\\1\\-1\\0\\0$	0 1 0 0 0 0
0 0 0 0 0 0	0 0 1 0 0 0	0 0 1 0 0 0	0 1 0 0 0 0	0 1 	1	$egin{array}{c} 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 1 0 0 0 0 0

0	0	0	0	0	0	0
0	0	0	1	1	1	1
0	0	1	0	-1	-1	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	?
	0 0 0 0 0 0	0 0 0 0 0 0 0 1 0 0 0 0 0 0	0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 1 1 0 0 1 0 -1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Learning an 7×7 , rank ≤ 3 matrix, essentially using 3-sparse recovery:

[0]	0	0	0	0	0	07	
0	0	0	1	1	1	1	
0	0	1	1	0	0	1	
0	1	1	1	0	1	1	
0	1	2	3	1	2	3	
0	1	2	3	1	2	3	
L0	1	2	3	1	2	3	
Γ0	0	0	0	0		0	07
ГО 0	0 0	0 0	0 1	0 1		0 1	0 1
0 0 0	0 0 0	0 0 1	0 1 0	0 1 	1	0 1 -1	0 1 0
0 0 0 0	0 0 0 1	0 0 1 0	0 1 0 0	0 1 	1	$0 \\ 1 \\ -1 \\ 1$	0 1 0 0
0 0 0 0	0 0 1 0	0 0 1 0	0 1 0 0	0 1 	1	0 1 -1 1 0	0 1 0 0 0
0 0 0 0 0	0 0 1 0 0	0 0 1 0 0	0 1 0 0 0	0 1 	1	$0 \\ 1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0$	0 1 0 0 0 0
0 0 0 0 0 0	0 0 1 0 0 0	0 0 1 0 0 0	0 1 0 0 0 0	0 1 	1	$egin{array}{c} 0 \\ 1 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 1 0 0 0 0 0

0	0	0	0	0	0	0
0	0	0	1	1	1	1
0	0	1	0	-1	-1	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Learning an 7×7 , rank ≤ 3 matrix, essentially using 3-sparse recovery:

Γ0	0	0	0	0	0	07	
0	0	0	1	1	1	1	
0	0	1	1	0	0	1	
0	1	1	1	0	1	1	
0	1	2	3	1	2	3	
0	1	2	3	1	2	3	
0	1	2	3	1	2	3	
Γ0	0	0	0	0		0	0
ГО 0	0 0	0 0	0 1	0 1		0 1	0 [.] 1
0 0 0	0 0 0	0 0 1	0 1 0	0 1 	1	0 1 -1	0 1 0
0 0 0 0	0 0 0 1	0 0 1 0	0 1 0 0	0 1 	1	$0 \\ 1 \\ -1 \\ 1$	0 [.] 1 0 0
ГО О О О	0 0 0 1 0	0 0 1 0 0	0 1 0 0	0 1 0 0	1	0 1 -1 1 0	0 ⁻ 1 0 0
0 0 0 0 0	0 0 1 0 0	0 0 1 0 0	0 1 0 0 0	0 1 -: 0 0 0	1	$0 \\ 1 \\ -1 \\ 1 \\ 0 \\ 0 \\ 0$	0 ⁻ 1 0 0 0

٢0	0	0	0	0	0	0]
0	0	0	1	1	1	1
0	0	1	1	0	0	1
0	1	1	1	0	1	1
0	1	2	3	1	2	3
0	1	2	3	1	2	3
0	1	2	3	1	2	3

Proof of Low-Rank Recovery (cont'd)

<ロト < 部 > < 言 > < 言 > こ 多 < ご > う < で 15 / 17

Proof of Low-Rank Recovery (cont'd)

Theorem

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

Proof.

• M rank $\leq r$

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

Proof.

• M rank $\leq r \implies$ the first non-zero diagonal is *r*-sparse

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

- M rank $\leq r \implies$ the first non-zero diagonal is *r*-sparse
- $M \operatorname{rank} \leq r$,

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

- M rank $\leq r \implies$ the first non-zero diagonal is *r*-sparse
- M rank $\leq r$, reduced row-echelon form

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

- $M \operatorname{rank} \leq r \implies$ the first non-zero diagonal is *r*-sparse
- *M* rank \leq *r*, reduced row-echelon form \implies every diagonal is *r*-sparse

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

- $M \operatorname{rank} \leq r \implies$ the first non-zero diagonal is *r*-sparse
- *M* rank \leq *r*, reduced row-echelon form \implies every diagonal is *r*-sparse
- M rank $\leq r$,

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

- $M \operatorname{rank} \leq r \implies$ the first non-zero diagonal is *r*-sparse
- *M* rank \leq *r*, reduced row-echelon form \implies every diagonal is *r*-sparse
- M rank $\leq r$, first k diagonals in reduced row-echelon form

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

- $M \operatorname{rank} \leq r \implies$ the first non-zero diagonal is *r*-sparse
- *M* rank \leq *r*, reduced row-echelon form \implies every diagonal is *r*-sparse
- M rank $\leq r$, first k diagonals in reduced row-echelon form \implies (k + 1)-diagonal of M is essentially r-sparse

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

- $M \operatorname{rank} \leq r \implies$ the first non-zero diagonal is *r*-sparse
- *M* rank \leq *r*, reduced row-echelon form \implies every diagonal is *r*-sparse
- M rank ≤ r, first k diagonals in reduced row-echelon form ⇒
 (k + 1)-diagonal of M is essentially r-sparse (and actually 2r-sparse)

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

- $M \operatorname{rank} \leq r \implies$ the first non-zero diagonal is *r*-sparse
- *M* rank \leq *r*, reduced row-echelon form \implies every diagonal is *r*-sparse
- M rank ≤ r, first k diagonals in reduced row-echelon form ⇒
 (k + 1)-diagonal of M is essentially r-sparse (and actually 2r-sparse)
- learning *M* via iteratively learning diagonals and row reducing (downward)

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

- $M \operatorname{rank} \leq r \implies$ the first non-zero diagonal is *r*-sparse
- *M* rank \leq *r*, reduced row-echelon form \implies every diagonal is *r*-sparse
- M rank ≤ r, first k diagonals in reduced row-echelon form ⇒
 (k + 1)-diagonal of M is essentially r-sparse (and actually 2r-sparse)
- learning *M* via iteratively learning diagonals and row reducing (downward)
- undo row-reduction at the end

Any r-sparse-recovery oracle with measurements \mathcal{V} can be turned into a rank \leq r low-rank recovery algorithm, with measurements \mathcal{H} , and $|\mathcal{H}| = 2n|\mathcal{V}|$.

- $M \operatorname{rank} \leq r \implies$ the first non-zero diagonal is *r*-sparse
- *M* rank \leq *r*, reduced row-echelon form \implies every diagonal is *r*-sparse
- M rank ≤ r, first k diagonals in reduced row-echelon form ⇒
 (k + 1)-diagonal of M is essentially r-sparse (and actually 2r-sparse)
- learning *M* via iteratively learning diagonals and row reducing (downward)
- undo row-reduction at the end
- called sparse-recovery 2n times once per diagonal

Summary

<ロト < 部 ・ < き ト く き ト き の へ () 16 / 17

<ロト < 回 ト < 画 ト < 画 ト < 画 ト 三 の へ () 16 / 17

• Low-rank recovery of matrices is reducible to sparse recovery of vectors.

- Low-rank recovery of matrices is reducible to sparse recovery of vectors.
- There is a deterministic quasi-polynomial-time algorithm for learning low-rank tensors.

- Low-rank recovery of matrices is reducible to sparse recovery of vectors.
- There is a deterministic quasi-polynomial-time algorithm for learning low-rank tensors.

Open Questions:

- Low-rank recovery of matrices is reducible to sparse recovery of vectors.
- There is a deterministic quasi-polynomial-time algorithm for learning low-rank tensors.

Open Questions:

• Can our reduction from low-rank recovery to sparse recovery be made stable?

- Low-rank recovery of matrices is reducible to sparse recovery of vectors.
- There is a deterministic quasi-polynomial-time algorithm for learning low-rank tensors.

Open Questions:

- Can our reduction from low-rank recovery to sparse recovery be made stable?
- Deterministic *polynomial*-time algorithm for learning tensors?

TOC

- Title
- 2 Learning Long Division
 - 3 Theme
 - Bilinear Forms
- 5 Results
- 6 Results (cont'd)
- Results Low-Rank Recovery
- Sparsity and Rank (I)
- Sparsity and Rank (II)
- 10 Proof of Low-Rank Recovery
- IProof of Low-Rank Recovery (cont'd)
- 12 Summary