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Learning Long Division

f (x , y) := x/y

Examples:

f (1, 1) = 1 = f (2, 2)

f (1, 2) = 1/2

f (2, 1) = 2

Claim

Now you know long division.

Proof.

f (x , y) = x/y is the uniquely determined by
the above, as a function of the form
f (x , y) = (ax + b)/(cy + d).
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Theme

Meta-fact

Simple functions are essentially determined by sufficiently many random
samples.

Example

PAC (Probably Approximately Correct) learning

Error-correcting Codes

(Black-box) Polynomial Identity Testing (PIT) — given an algebraic
circuit C , does the polynomial C (~x) equal zero?
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More on the Theme

Meta-hope

Simple functions are essentially

efficiently

determined by random
samples.

Example (of hope)

Coding theory: need deterministic coding schemes for
communication

Complexity theory: understanding the power of (pseudo)randomness

Complexity theory: connections with circuit lower bounds
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Bilinear Forms

Let F be a field.

Let M be an n × n matrix of rank ≤ r . Define
f : Fn × Fn → F by f (~x , ~y) := ~x tM~y = 〈M, ~x t~y〉

Question

How many queries to f do we need to determine if f ≡ 0? To learn M?

Answer

≈ 2nr (resp. ≈ 4nr) are sufficient, by the probabilistic method and
Schwartz-Zippel

Answer

Θ(nr) are necessary, by counting.

Question

Can we construct ≈ 2nr (resp. 4nr) explicit samples for identity testing
(resp. learning)? For learning M efficiently?
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Bilinear Forms — Low Rank

Let F be a field. Let M be an n × n matrix of rank ≤ r . Define
f : Fn × Fn → F by f (~x , ~y) := ~x tM~y = 〈M, ~x t~y〉

Question

How many queries to f do we need to determine if f ≡ 0? To learn M?

Answer

≈ 2nr (resp. ≈ 4nr) are sufficient, by the probabilistic method and
Schwartz-Zippel

Answer

Θ(nr) are necessary, by counting.

Question

Can we construct ≈ 2nr (resp. 4nr) explicit samples for identity testing
(resp. learning)?
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Results

Definition

Let ~x ∈ Fn be an unknown vector. A measurement of ~x is an inner
product 〈~a, ~x〉 for some known vector ~a ∈ Fn. A measurement of an

unknown matrix M is an inner product in the space Fn2 . A measurement
〈A,M〉 of the matrix M is rank 1 if A is rank 1.

Thus, evaluations to the bilinear form f (~x , ~y) = ~x tM~y = 〈~x t~y ,M〉 are all
rank-1 measurements of M.

Theorem

Over large fields, one can efficiently learn an n× n matrix of rank ≤ r with
4nr measurements and can even be done with rank-1 measurements.

The number of measurements is optimal over algebraically closed fields.
The use of rank-1 measurements is novel, and thus instantiates the
meta-hope, by learning a function from deterministic evaluations.
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Results (cont’d)

Definition (Tensor)

A tensor is a higher dimensional matrix in [n]d .

Tensors have a rank, dnr parameters for tensors of rank r , but nd in
general.

Tensors define a d-linear form, evaluating that form is a rank-1
measurement of the tensor.

Theorem

There is a deterministic poly(n, r , d)log d -time algorithm that reconstructs
rank r tensors in [n]d from evaluations of their d-linear forms.

This is the first deterministic sub-exponential time algorithm for even
determining if the d-linear form is non-zero, by only using its evaluations.
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Results — Low-Rank Recovery

Theorem

Any r -sparse-recovery oracle with measurements V can be turned into a
rank ≤ r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

An r -sparse-recovery oracle is simply an error-correcting-code with that
can correct r errors (thus, distance 2r)

=⇒ take the Reed-Solomon code with 2r measurements (for large fields).

=⇒ get 2n · 2r = 4nr measurements

rank 1 measurements: do a clever change of basis from H to H′
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Sparsity and Rank (I)

want: M has rank ≤ r =⇒ related r sparse vector.
hope: some row or column of M is sparse. (false)
a new hope: the some diagonal of M is sparse.

Definition

Let M be n × n. The k-diagonal of M are the entries {Mi ,j}i+j=k .

Lemma

Let M be n × n, of rank ≤ r . The first non-zero diagonal is r -sparse.
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Sparsity and Rank (II)

Lemma

Let M be n × n, of rank ≤ r . The first non-zero diagonal is r -sparse.

Proof by example.



0 0 0 0 a ? ? ?
0 0 0 b ? ? ? ?
0 0 c ? ? ? ? ?
0 d ? ? ? ? ? ?
e ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?



The rows with non-zeros
amongst the entries a, b, c , d , e
are linearly independent, as this
is a triangular system, so this
follows from standard linear
algebra. So if the rank is at
most 3, then this diagonal is
3-sparse.
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Proof of Low-Rank Recovery

Learning an 7× 7, rank ≤ 3 matrix, essentially using 3-sparse recovery:

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 1 1 0 0 1
0 1 1 1 0 1 1
0 1 2 3 1 2 3
0 1 2 3 1 2 3
0 1 2 3 1 2 3





0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 1 0 −1 −1 0
0 1 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



Given a row-reduced upper part
of M, the next diagonal is
essentially 3-sparse. The effect of
(downward) row-reduction on the
measurements can be offset.
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Proof of Low-Rank Recovery (cont’d)

Theorem

Any r -sparse-recovery oracle with measurements V can be turned into a
rank ≤ r low-rank recovery algorithm, with measurements H, and
|H| = 2n|V|.

Proof.

M rank ≤ r =⇒ the first non-zero diagonal is r -sparse

M rank ≤ r , reduced row-echelon form =⇒ every diagonal is r -sparse

M rank ≤ r , first k diagonals in reduced row-echelon form =⇒
(k + 1)-diagonal of M is essentially r -sparse (and actually 2r -sparse)

learning M via iteratively learning diagonals and row reducing
(downward)

undo row-reduction at the end

called sparse-recovery 2n times — once per diagonal
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Results:

Low-rank recovery of matrices is reducible to sparse recovery of
vectors.

There is a deterministic quasi-polynomial-time algorithm for learning
low-rank tensors.

Open Questions:

Can our reduction from low-rank recovery to sparse recovery be made
stable?

Deterministic polynomial-time algorithm for learning tensors?
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