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• Generate codebooks according to some i.i.d. distributions.

• Powerful generalizations including superposition coding, dirty paper coding,
block Markov coding, and many more...

• Rate regions described in terms of (single-letter) information measures
optimized over pdfs.

• Many important successes: multiple-access channels, (degraded) broadcast
channels, Slepian-Wolf compression, network coding, and many more...

• State-of-the-art elegantly captured in the recent textbook of El Gamal and
Kim.

• Codes with algebraic structure are sought after to mimic the performance
of i.i.d. random codes.
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Goal: Roughly speaking, for a given network, determine necessary and
sufficient conditions on the rates at which the sources (or some
functions thereof) can be communicated to the destinations.

Algebraic Approach:
• Utilize linear or lattice codebooks.

• Compelling examples starting from the work of Körner and Marton on
distributed compression and, more recently, many papers on physical-layer
network coding, distributed dirty paper coding, and interference alignment.

• Coding schemes exhibit behavior not found via i.i.d. ensembles.

• However, some classical coding techniques are still unavailable.

• No general theory as of yet... but we are making progress...

• Most of the initial efforts have focused on Gaussian networks.



Road Map

• Algebraic Network Source Coding: Classic example of Körner and
Marton.

• Algebraic Network Channel Coding: Compute-and-forward and an
application to interference alignment.



Slepian-Wolf Problem

s1 E1
R1

s2 E2
R2

D ŝ1
ŝ2

• Joint i.i.d. sources p(s1, s2) =

n∏

i=1

pS1S2
(s1i, s2i)

• Rate Region: Set of rates (R1, R2) such that the encoders can
send s1 and s2 to the decoder with vanishing probability of error

P{(̂s1, ŝ2) 6= (s1, s2)} → 0 as n → ∞
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Random Binning

• Codebook 1: Independently and uniformly assign each source
sequence s1 to a label {1, 2, . . . , 2nR1}

• Codebook 2: Independently and uniformly assign each source
sequence s2 to a label {1, 2, . . . , 2nR2}

• Decoder: Look for jointly typical pair (̂s1, ŝ2) within the received
bin. Union bound:

P

{

jointly typical (̂s1, ŝ2) 6= (s1, s2) in bin (ℓ1, ℓ2)
}

≤
∑

jointly typical (̃s1 ,̃s2)

2−n(R1+R2)

≤ 2n(H(S1,S2)+ǫ) 2−n(R1+R2)

• Need R1 +R2 > H(S1, S2).

• Similarly, R1 > H(S1|S2) and R2 > H(S2|S1)
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• Assume we have chosen an injective mapping from the source
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• Codebook 1: Generate matrix G1 with i.i.d. uniform entries drawn
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Random Linear Binning

• Assume we have chosen an injective mapping from the source
alphabets to Fp.

• Codebook 1: Generate matrix G1 with i.i.d. uniform entries drawn
from Fp. Each sequence s1 is binned via matrix multiplication,
w1 = G1s1.

• Codebook 2: Generate matrix G2 with i.i.d. uniform entries drawn
from Fp. Each sequence s2 is binned via matrix multiplication,
w2 = G2s2.

• Bin assignments are uniform and pairwise independent
(except for sℓ = 0)

• Can apply the same union bound analysis as random binning.



Slepian-Wolf Rate Region

Slepian-Wolf Theorem

Reliable compression possible if and

only if:

R1 ≥ H(S1|S2)

R2 ≥ H(S2|S1)

R1 +R2 ≥ H(S1, S2)

Random linear binning is as good
as random i.i.d. binning.
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Slepian-Wolf Rate Region

Slepian-Wolf Theorem

Reliable compression possible if and

only if:

R1 ≥ H(S1|S2) = hB(θ)

R2 ≥ H(S2|S1) = hB(θ)

R1 +R2 ≥ H(S1, S2) = 1 + hB(θ)

Random linear binning is as good
as random i.i.d. binning.

R2

R1

S-W

hB(θ)

hB(θ)

R1 +R2 = 1 + hB(θ)

Example: Doubly Symmetric Binary Source
S1 ∼ Bern(1/2) U ∼ Bern(θ) S2 = S1 ⊕ U



Körner-Marton Problem

• Binary sources

• s1 is i.i.d. Bernoulli(1/2)

• s2 is s1 corrupted by
Bernoulli(θ) noise

• Decoder wants the modulo-2 sum .

s1 E1
R1

s2 E2
R2

D û

u = s1 ⊕ s2

Rate Region: Set of rates (R1, R2) such that there exist encoders and
decoders with vanishing probability of error

P{û 6= u} → 0 as n → ∞

Are any rate savings possible over sending s1 and s2 in their entirety?



Random Binning

• Sending s1 and s2 with random binning requires
R1 +R2 > 1 + hB(θ).

• What happens if we use rates such that R1 +R2 < 1 + hB(θ)?

• There will be exponentially many pairs (s1, s2) in each bin!

• This would be fine if all pairs in a bin have the same sum, s1 + s2.
But this probability goes to zero exponentially fast!



Körner-Marton Problem: Random Binning Illustration

1 2 3 2nR14 · · ·

1

2

3

4

...

2nR2



Körner-Marton Problem: Random Binning Illustration

1 2 3 2nR14 · · ·

1

2

3

4

...

2nR2



Linear Binning

• Use the same random matrix G for linear binning at each encoder:

w1 = Gs1 w2 = Gs2

• Idea from Körner-Marton ’79: Decoder adds up the bins.

w1 ⊕w2 = Gs1 ⊕Gs2

= G(s1 ⊕ s2)

= Gu

• G is good for compressing u if R > H(U) = hB(θ).

Körner-Marton Theorem

Reliable compression of the sum is possible if and only if:

R1 ≥ hB(θ) R2 ≥ hB(θ) .



Körner-Marton Problem: Linear Binning Illustration

1 2 3 2nR14 · · ·

1

2

3

4

...

2nR2



Körner-Marton Problem: Linear Illustration
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Körner-Marton Rate Region

R2

R1

S-W

K-M

hB(p)

hB(p)

Linear codes can improve performance!

(for distributed computation of dependent sources)



(Algebraic) Network Source Coding

• Krithivasan-Pradhan ’09: Nested lattice coding framework for
distributed Gaussian source coding.

• Krithivasan-Pradhan ’11: Nested group coding framework for
distributed source coding for discrete memoryless sources.

• Can show that these rate regions sometimes outperform the
Berger-Tung region (best known performance via i.i.d. ensembles).
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• Krithivasan-Pradhan ’09: Nested lattice coding framework for
distributed Gaussian source coding.

• Krithivasan-Pradhan ’11: Nested group coding framework for
distributed source coding for discrete memoryless sources.

• Can show that these rate regions sometimes outperform the
Berger-Tung region (best known performance via i.i.d. ensembles).

• Now let’s take a look at an algebraic framework for network channel
coding.
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ŵ2

...
ŵK
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• Which linear combinations can be sent over a given channel?

• Where can this help us?



Compute-and-Forward: Problem Statement
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wℓ ∈ F
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• Real-valued inputs and outputs,
xℓ,y ∈ R

n.

• Power constraint, 1

n
E‖xℓ‖2 ≤ P .

• Gaussian noise, z ∼ N (0, I).

• Equal rates: R =
k

n
log

2
p

• Decoder wants M linear combinations of the messages with

vanishing probability of error lim
n→∞

P

(
⋃

m{ûm 6= um}
)

= 0.

• Receiver can use its channel state information (CSI) to match the
linear combination coefficients qmℓ ∈ Fp to the channel coefficients
hℓ ∈ R. Transmitters do not require CSI.

• What rates are achievable as a function of hℓ and qmℓ?
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Computation Rate

• Want to characterize achievable rates as a function of hℓ and qmℓ.

• Easier to think about integer rather than finite field coefficients.

• The linear combination with integer coefficient vector
am = [am1 am2 · · · amL]

T ∈ Z
L corresponds to

um =

L⊕

ℓ=1

qmℓwℓ where qmℓ = [amℓ] mod p

(where we assume an implicit mapping between Fp and Zp).

• Key Definition: The computation rate region described by
Rcomp(h,a) is achievable if, for any ǫ > 0 and n, p large enough, a
receiver can decode any linear combinations with integer coefficient
vectors a1, . . . ,aM ∈ Z

L for which the message rate R satisfies

R < min
m

Rcomp(h,am)



Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

The computation rate region described by

Rcomp(h,a) = max
α∈R

1

2
log+

(
P

α2 + P‖αh− a‖2
)

is achievable.
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Theorem (Nazer-Gastpar ’11)

The computation rate region described by

Rcomp(h,a) =
1

2
log+

(

P

aT
(
P−1I+ hhT

)−1
a

)

is achievable.

w1 E1
x1 h1

wL EL
xL

hL

...
...

z

y
D

R
n

F
k
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Compute-and-Forward

w1

wL

Q
û1

ûM

...
... F

k
p

if R < min
m

Rcomp(h, am) for some am ∈ Z
L satisfying [am] mod p = qm.
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Compute-and-Forward: Achievable Rates

Theorem (Nazer-Gastpar ’11)

The computation rate region described by

Rcomp(h,a) =
1

2
log+

(

P

aT
(
P−1I+ hhT

)−1
a

)

is achievable.

Special Cases:

• Perfect Match: Rcomp(a,a) =
1

2
log+

(
1

‖a‖2 + P

)

• Decode a Message:

Rcomp

(

h, [ 0 · · · 0
︸ ︷︷ ︸

m−1 zeros

1 0 · · · 0]T
)

=
1

2
log

(

1 +
h2mP

1 + P
∑

ℓ 6=m

h2ℓ

)



Compute-and-Forward: Effective Noise

y =
L∑

ℓ=1

hℓxℓ + z

=

L∑

ℓ=1

aℓxℓ +

L∑

ℓ=1

(hℓ − aℓ)xℓ + z

Desired Codebook:

• Closed under integer linear combinations =⇒ lattice codebook.



Compute-and-Forward: Effective Noise

y =
L∑

ℓ=1

hℓxℓ + z

=

L∑

ℓ=1

aℓxℓ +

L∑

ℓ=1

(hℓ − aℓ)xℓ + z

Effective Noise

Desired Codebook:
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Compute-and-Forward: Effective Noise

y =
L∑

ℓ=1

hℓxℓ + z

=

L∑

ℓ=1

aℓxℓ +

L∑

ℓ=1

(hℓ − aℓ)xℓ + z
Decode−−−→ L⊕

ℓ=1

qℓwℓ

Effective Noise

Desired Codebook:

• Closed under integer linear combinations =⇒ lattice codebook.

• Independent effective noise =⇒ dithering.

• Isomorphic to F
k
p =⇒ nested lattice codebook.
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Nested Lattices

• A lattice is a discrete subgroup of Rn.

• Nearest neighbor quantizer:

QΛ(x) = argmin
λ∈Λ

‖x− λ‖2

• Two lattices Λ and ΛFINE are nested
if Λ ⊂ ΛFINE

• Quantization error serves as modulo
operation:

[x] mod Λ = x−QΛ(x) .

Distributive Law:
[
x1 + a[x2] mod Λ

]
mod Λ = [x1 + ax2] mod Λ for all a ∈ Z.
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Nested Lattice Codes

• Nested Lattice Code: Formed by
taking all elements of ΛFINE that lie in
the fundamental Voronoi region of Λ.

• Fine lattice ΛFINE protects against
noise.

• Coarse lattice Λ enforces the power
constraint.

• Existence of good nested lattice codes:
Loeliger ’97, Forney-Trott-Chung ’00,
Erez-Litsyn-Zamir ’05,

Ordentlich-Erez ’12.

• Erez-Zamir ’04: Nested lattice codes
can achieve the point-to-point
Gaussian capacity.

B(0,
√
nP )
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All users employ the same nested lattice code:
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Compute-and-Forward: Illustration

Extra noise penalty for non-integer channel coefficients:
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h = [ 1.4 2.1 ]

am = [ 2 3 ]

Effective noise: 1 + P‖h− am‖2
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Compute-and-Forward: Illustration

Decode to the closest lattice point:

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

am = [ 2 3 ]

Effective noise: α2 + P‖αh − am‖2



Compute-and-Forward: Illustration

Recover integer linear combination mod ΛC:

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

am = [ 2 3 ]

Effective noise: α2 + P‖αh − am‖2



Compute-and-Forward: Illustration

Map back to linear combination of the messages:

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

am = [ 2 3 ]

Effective noise: α2 + P‖αh − am‖2

L⊕

ℓ=1

qmℓwℓ
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(Algebraic) Network Channel Coding

• Compute-and-forward is a useful setting to develop algebraic
multi-user coding techniques.

• Ordentlich-Erez-Nazer ’13: In a K-user Gaussian multiple-access
channel, the sum of the K best computation rates is exactly equal
to the multiple-access sum capacity. Algebraic successive
cancellation gives this operational meaning.

• Upcoming work on a compute-and-forward framework for discrete
memoryless networks.

• Let’s take a look at an application of compute-and-forward to
interference alignment.
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Khandani ’08: Alignment for the MIMO X channel. See Jafar ’11

monograph (or recent e-book) for a richer history.
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Khandani ’08: Alignment for the MIMO X channel. See Jafar ’11
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Symmetric K-User Gaussian Interference Channel
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• Signal space alignment (e.g., beamforming) is infeasible.

• Signal scale alignment attains K/2 degrees-of-freedom for almost all
channel gains, Motahari et al. ’09, Wu-Shamai-Verdu ’11.

• At finite SNR, the approximate capacity known in some special
cases: two-user Etkin-Tse-Wang ’08, many-to-one and one-to-many
Bresler-Parekh-Tse ’10, cyclic Zhou-Yu ’13.



Symmetric K-User Gaussian Interference Channel
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• Signal space alignment (e.g., beamforming) is infeasible.

• Signal scale alignment attains K/2 degrees-of-freedom for almost all
channel gains, Motahari et al. ’09, Wu-Shamai-Verdu ’11.

• At finite SNR, the approximate capacity known in some special
cases: two-user Etkin-Tse-Wang ’08, many-to-one and one-to-many
Bresler-Parekh-Tse ’10, cyclic Zhou-Yu ’13.

• Let’s look at the symmetric case.
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Effective Multiple-Access Channel

• Each receiver sees an effective two-user multiple-access channel,

yk = xk + g
∑

ℓ 6=k

xℓ + zk .

Successive Cancellation Decoding:

• Decode and subtract interference
∑

ℓ 6=k

xℓ, then decode xk.

• Only optimal when interference is very strong, Sridharan et al. ’08.

Joint Decoding:

• Direct analysis is hindered by dependencies between codeword pairs.

• Existing work only applies at very high SNR, Ordentlich-Erez ’13.
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Example: Two-User Lattice Alignment

1

2

• Two lattice codewords can be recovered from their linear
combination if the ratio of the coefficients is irrational.

• If the ratio is rational, it is not always possible to uniquely identify
the pair of codewords.
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Alignment via Two Equations

• High SNR behavior: K/2 degrees-of-freedom can be attained up to
a set of channel gains of measure zero. Loss of degrees-of-freedom
for rational coefficients. Etkin-Ordentlich ’09, Motahari et al. ’09,

Wu-Shamai-Verdu ’11.

• Ordentlich-Erez-Nazer ’14: Decode two linear combinations:

a1xk + a2
∑

ℓ 6=k

xℓ b1xk + b2
∑

ℓ 6=k

xℓ

using the compute-and-forward framework. If the coefficients are
linearly independent, we can solve for the desired message.

• Set of “bad rationals” depends on the SNR. Only rationals with
denominator SNR1/4 or smaller cause issues.



Symmetric K-User Gaussian Interference Channel
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Approximate Capacity Results: Strong Regime

• Using the fact that the sum of the computation rates is nearly equal
to the multiple-access sum capacity, we can approximate the sum
capacity of the symmetric K-user Gaussian interference channel in
all regimes.

Rsym >
1

2
log
(
1 + (1 + 2g2)SNR

)
−max

a∈Z2

Rcomp

(
[1 g]T,a

)
− 1

• Via basic results from Diophantine approximation, we can
approximate the sum capacity up to an outage set.



Approximate Capacity Results: Strong Regime

• Using the fact that the sum of the computation rates is nearly equal
to the multiple-access sum capacity, we can approximate the sum
capacity of the symmetric K-user Gaussian interference channel in
all regimes.

Rsym >
1

2
log
(
1 + (1 + 2g2)SNR

)
−max

a∈Z2

Rcomp

(
[1 g]T,a

)
− 1

• Via basic results from Diophantine approximation, we can
approximate the sum capacity up to an outage set.

• Sample Result: In the strong interference regime,

1

4
log+(g2SNR)− c

2
− 3 ≤ Csym ≤ 1

4
log+(g2SNR) + 1

for all channel gains except for an outage set whose measure is a
fraction of 2−c of the interval 1 < |g| <

√
SNR, for any c > 0.
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Generalizations

• What about beyond the symmetric case?

• Ntranos-Cadambe-Nazer-Caire ’13: Framework for lattice
interference alignment for any setting where we have
“stream-by-stream” alignment.



Algebraic Structure in Network Information Theory

Some topics we did not have a chance to cover:

• Relaying: Wilson-Narayanan-Pfister-Sprintson ’10,
Nam-Chung-Lee ’10, ’11, Goseling-Gastpar-Weber ’11,
Song-Devroye ’13, Nokleby-Aazhang ’12

• Cellular and MIMO Networks: Sanderovich-Peleg-Shamai ’11,
Nazer-Sanderovich-Gastpar-Shamai ’09, Zhan-Nazer-Erez-Gastpar

’12, Hong-Caire ’13, Ordentlich-Erez ’13

• Distributed Dirty-Paper Coding: Philosof-Zamir ’09,
Philosof-Zamir-Erez-Khisti ’11, Wang ’12

• Joint Source-Channel Coding: Kochman-Zamir ’09,
Nazer-Gastpar ’07, ’08, Soundararajan-Vishwanath ’12

• Physical-Layer Secrecy: He-Yener ’11, ’14,
Kashyap-Shashank-Thangaraj ’12



Concluding Remarks

• Codes with algebraic structure can sometimes outperform
i.i.d. ensembles.

• Ongoing efforts towards developing an algebraic framework for
network source and channel coding.

• Preliminary efforts have focused on the Gaussian case but discrete
memoryless analogues of these results now seem within reach.

• An open question: How should we choose the underlying algebraic
structure?

• Tutorial slides from 2014 European School of Information Theory
available on my website.

• Upcoming textbook by Ram Zamir on “Lattice Coding for Signals
and Networks.”


