Molecular Systems Biology 8; Article number 605; doi:10.1038/msb.2012.37
Citation: Molecular Systems Biology 8:605

© 2012 EMBO and Macmillan Publishers Limited Al rights reserved 1744-4292/12
www.molecularsystemsbiology.com

molecular
systems
b|o|ogy

Inferring transcriptional and microRNA-mediated
regulatory programs in glioblastoma

Manu Setty', Karim Helmy?, Aly A Khan', Joachim Silber®, Aaron Arvey', Frank Neezen', Phaedra Agius', Jason T Huse®,

Eric C Holland? and Christina S Leslie™*

' Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA, 2 Cancer Biology and Genetics Program, Memorial Sloan-Kettering
Cancer Center, New York, NY, USA and ® Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA

* Corresponding author. Computational Biology Program, Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065,
USA. Tel.: + 1 646 888 2762; Fax: + 1 646 422 0717; E-mail: cleslie @ cbio.mskcc.org

Received 26.10.11; accepted 25.7.12

Large-scale cancer genomics projects are profiling hundreds of tumors at multiple molecular layers,
including copy number, mRNA and miRNA expression, but the mechanistic relationships between
these layers are often excluded from computational models. We developed a supervised learning
framework for integrating molecular profiles with regulatory sequence information to reveal
regulatory programs in cancer, including miRNA-mediated regulation. We applied our approach to
320 glioblastoma profiles and identified key miRNAs and transcription factors as common or
subtype-specific drivers of expression changes. We confirmed that predicted gene expression
signatures for proneural subtype regulators were consistent with in vivo expression changes in
a PDGF-driven mouse model. We tested two predicted proneural drivers, miR-124 and miR-132,
both underexpressed in proneural tumors, by overexpression in neurospheres and observed
a partial reversal of corresponding tumor expression changes. Computationally dissecting the
role of miRNAs in cancer may ultimately lead to small RNA therapeutics tailored to subtype
or individual.
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Introduction

Large-scale cancer genomics projects (The Cancer Genome
Atlas Research Network, 2008; Hudson et al, 2010) are
currently generating rich multi-modal tumor profiling data
sets for very large collections of tumors, but arguably these
data are still underused. Such studies provide multiple
layers of genome-wide data for each tumor—e.g., DNA
copy number, promoter methylation, mRNA expression, and
miRNA expression—and should enable integrative modeling
of the mechanisms of dysregulation of gene expression.
However, typical computational analyses examine each layer
independently or combine the layers using generic evidence
integration methods or post hoc statistical approaches.
Glioblastoma multiforme (GBM), the subject of multiple
high-throughput characterization efforts (Phillips et al, 2006;
Li et al, 2009), is a prime example of a data-rich cancer,
and recent computational studies of GBM show both the
successes and limitations of current practice. Much effort has
focused on the problem of identifying GBM tumor subtypes
by clustering mRNA expression data (Phillips et al, 2006;
Li et al, 2009; Verhaak et al, 2010). The most recent of
these studies integrated mRNA profiles from multiple array
platforms on TCGA samples to define four expression-based
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subtypes called proneural, classical, mesenchymal, and
neural and found differing patterns of mutations of PDGFRA,
IDH1, EGFR, and NF1 among these subtypes (Verhaak et al,
2010). More recently, another TCGA group profiled promoter
DNA methylation alterations in GBM tumors to define a
glioma-CpG island methylator phenotype (G-CIMP), which
they observed was preferentially enriched in the proneural
subtype (Noushmehr et al, 2010). One integrative algorithmic
effort jointly clustered samples across multiple data sources
(Shen et al, 2009). However, the mechanisms that give rise
to these different subtypes are incompletely understood;
transcriptomic subtypes may arise from different progenitor
populations or be initiated by different driver mutations
(Verhaak et al, 2010), but most of the evidence remains
correlative. Moreover, various proposed expression subtype
categorizations map imperfectly onto each other (Huse et al,
2011). Aside from clustering approaches, there have been
efforts to use reverse-engineering techniques on mRNA
expression data to identify master transcriptional regulators
in high-grade gliomas (Carro et al, 2010) and on joint mRNA
and copy number profiles to find ‘driver’ copy number
aberrations in GBM (Jornsten et al, 2011). Notably, these
systems biology approaches attempt to derive transcriptional
or more abstract driver-to-target regulatory relationships
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without making use of regulatory sequence or binding
information.

The role of miRNA-mediated regulation in GBM has been
relatively understudied in computational efforts, although
there has been a recent study of competing endogenous RNAs
in glioblastoma that may act as miRNA ‘sponges’ in oncogenic
pathways (Sumazin et al, 2011). Aberrant expression of
miRNAs in glioblastoma tumors, early-passage glioblastoma
cell cultures, and established glioblastoma cell lines has been
widely observed (Chan et al, 2005; Corsten et al, 2007; Silber
et al, 2008; Chiocca and Lawler, 2010; Godlewski et al, 2010)
and one miRNA, miR-26a, has been shown to promote
gliomagenesis in vivo by repression of the tumor suppressor
PTEN. Impairment of the miRNA regulatory network is now
viewed as a key mechanism of glioblastoma pathogenesis
(Godlewski et al, 2010; Kim et al, 2011), and miRNA expression
signatures have been used to classify GBM into subtypes
related to lineages in the nervous system (Kim et al, 2011). An
emerging hypothesis proposes that suppression of develop-
mentally important miRNAs contributes to maintenance of
stem cell renewal and proliferation, while their expression
leads to differentiation (Godlewski et al, 2010; Kim et al, 2011).
Despite extensive research on the potential contribution of
miRNAs to tumor cell ‘stemness’ and to regulation of
oncogenic pathways in GBM, miRNAs have been largely
excluded from systematic computational modeling of GBM
and indeed other cancers (Basso et al, 2005; Akavia et al, 2010;
Carro et al, 2010; Jornsten et al, 2011).

Here, we propose an integrative strategy to combine mRNA,
copy number, and miRNA profiles with regulatory sequence
information to decipher transcriptional and miRNA-mediated
regulatory programs in glioblastoma, using the TCGA data set
for training and statistical validation. Our approach learns the
key direct regulators, both transcription factors (TFs) and
miRNAs, that account for differential gene expression beyond
copy number changes in each tumor sample relative to normal
brain reference samples, using promoter and 3'UTR motif
features with sparse regression. We first learned tumor-
specific regression models by training on each sample
independently, and we examined whether tumors fell
into different subgroups based on their regression models.
Classifying tumors into existing expression subtypes is not
a goal of our study, and indeed a priori it is not clear how
well our regulatory models will recover previously defined
‘transcriptomic’ subtypes: potentially, these subtypes might be
attributable to different frequencies of large-scale copy number
aberrations, or to different degrees of stromal contamination,
to give two possibilities. Nevertheless, we found that tumors
belonging to the previously defined proneural and mesenchy-
mal classes have distinct regulatory models. This result suggests
that the distinct expression changes in these two classes can be
attributed in part to the dysregulation of subtype-specific TFs
and miRNAs. To further examine potential subtype-specific
regulatory programs, we retrained the tumor models jointly
along with subtype assignments and identified key common
and subtype-specific regulators. We call these regulators
‘drivers’ of differential expression, since they can statistically
explain a significant part of the pathogenic expression changes
in tumors. Note that this analysis does not presume to
identify the key mutation events in tumor development;
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rather, we are characterizing the patterns of dysregulation in
tumors in terms of TFs and miRNAs.

We focused experimental follow-up on the proneural subtype,
where we confirmed that gene sets associated with significant
regulators in our model were consistent with in vivo expres-
sion changes in a mouse model of PDGF-driven tumors.
We also tested key miRNA regulators, miR-124 and miR-132,
both underexpressed in proneural tumors, by transfection into
PDGF-driven neurospheres and showed that they drive expres-
sion changes that are concordant with tumor-versus-normal
expression changes in the proneural class. By contrast, when
we overexpressed control miRNAs that are underexpressed
in proneural tumors but are not chosen by the model, the
expression changes induced in our neurosphere model are not
concordant with tumor-versus-normal expression changes.

Results

An integrative regression model explains
dysregulated mRNA expression profiles
in tumor samples

We set out to learn statistical models of the transcriptional and
miRNA-mediated regulatory programs that underlie expres-
sion changes in tumor samples versus normal tissue by
appropriately incorporating regulatory elements as well as
measured genomic and epigenomic alterations as features in
the model (Figure 1A). Tumor-specific miRNA expression
changes are used to restrict the miRNAs that can be used as
explanatory variables (Figure 1A).

We first assessed whether we could train regression models
to predict log gene expression changes in each tumor, using
regulatory elements in gene promoters and 3’'UTRs and gene
copy number data. In samples where DNA methylation data at
gene promoters were also available, we also expanded the
model to include a summarized DNA methylation feature (see
Materials and methods) for each gene. In this setting, training
examples correspond to genes within a given tumor sample:
the output or response variable is the log expression change of
each gene, while the input variables or features consist of
counts of TF and miRNA binding sites in the gene’s regulatory
regions, an estimate of the gene’s average copy number from
aCGH data, and (where available) a measure of promoter DNA
methylation (Figure 1B). Using a simple mechanistic model of
gene expression, we expected log gene expression change to be
globally correlated to gene copy number; we attributed
residual log expression changes beyond copy number (and
promoter methylation) to differential regulation mediated by
regulatory elements via a linear model based on motif counts
in the promoter and 3'UTR. In other words, after taking copy
number and DNA methylation into account, we try to explain
tumor versus normal differential gene expression in terms of
the dysregulated activity of TFs and miRNAs by correlation
with motif counts. Formally, this can be formulated as a
regression model:

Ve A wCNCg + ZwmiRNg‘ ik ZWTFN&TF

miR TF

where y, is the log expression change in the tumor (relative
normal tissue) for gene g; Cg is the gene’s copy number; N , is
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Figure 1 Modeling gene expression changes in tumors to identify dysregulated transcription factors and microRNAs. (A) Genome-wide measurements like copy
number, DNA methylation, and miRNA expression are used to predict gene expression changes of tumor samples relative to normal references. (B) To infer
dysregulated regulatory programs from tumor profiling data, change in gene expression in a tumor sample is modeled as linear function of the gene’s copy number, DNA
methylation at the promoter (when available for the sample), and counts of transcription factor binding sites in the DNasel hypersensitive regions of the gene’s promoter
and conserved miRNA binding sites in the 3'UTR. (C) The linear model is trained for all tumors, either on a sample-by-sample basis or simultaneously by using a group
approach, on all Refseq genes using sparse regression so that only a few explanatory variables have non-zero regression coefficients. In particular, only a small number
of transcription factors (TFs) and miRNAs, that is, those whose binding sites best correlate with target gene expression changes in the tumor sample, enter into the
regression model. Feature dependency analysis on these regression models identifies common and subtype-specific regulators.
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the count of binding sites for TF or miRNA r in the gene’s
promoter or 3'UTR, respectively; and w = (wN, w™R, w'F) is
the model vector of regression coefficients (Materials and
methods). As motif data, we used binding site predictions for
152 human sequence-specific TFs based on motif hits from the
TRANSFAC database (Kel et al, 2003) and for 434 miRNA seed
families based on conserved 7-mer seed matches (see Materials
and methods; Supplementary Tables 1-3). For the TF motifs,
we filtered for hits that fall in DNasel accessible regions based
on DNase-seq data for a glioma cell line available through the
ENCODE project (Materials and methods; Figure 1B).

To avoid overfitting in the presence of noisy expression data
and a large number of explanatory variables, we first used
regularized regression via a lasso constraint (Tibshirani, 1996)
to identify a small number of TFs and miRNAs that best
explain global changes in expression on a sample-by-sample
basis (Figure 1C). The lasso constraint enforces sparsity in the
learned parameters, that is, compels most of the regression
coefficients to be zero. This reduces the number of features
included in the model, leading to better prediction accuracy
and more interpretable results. The sample-by-sample
approach trains a regression model for each tumor indepen-
dently and does not use information about the tumor’s
assignment to previously defined transcriptomic subtypes.
We also developed a group lasso approach for training all the
sample-specific regression models together, sharing informa-
tion across samples while encoding information about
transcriptomic subtypes (Figure 1C). In both the sample-by-
sample and group models, we imposed the additional
constraint that only a tumor’s differentially expressed miRNAs
be considered as potential features in the regression model.
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We evaluated our sample-by-sample approach on a data set
of 161 GBM tumors from TCGA belonging to the proneural,
mesenchymal, and classical subtypes (Verhaak et al, 2010); we
removed samples of the neural subtype, which is believed
to be an ill-defined category (Huse et al, 2011). We were
encouraged to find that the sample-by-sample regression
models did indeed predict tumor versus normal expression
changes with significant accuracy. In particular, in 10-fold
cross-validation experiments on held-out genes, we obtained
a mean Spearman rank correlation between predicted and
measured gene expression changes of 0.174, a modest but
highly significant result (P<2e — 16), shown in Figure 2A. By
contrast, if we either randomized the output gene expression
values or randomized motif hits and then trained sample-by-
sample regression models, we obtained mean Spearman
correlations just below 0. It is important to note that gene
copy number was chosen as a feature in all samples and led to
a significant improvement in cross-validation performance
(P<2.2e — 16, signed-rank test), underscoring the fact that
copy number is an important factor for explaining gene
expression changes in tumors. We also confirmed that filtering
TF motif hits by DNasel accessibility led to better prediction
performance than restricting to conserved TF binding sites
(Supplementary Figure 1A). However, using miRNA expres-
sion instead of number of conserved seed matches did not
significantly affect performance (Supplementary Figure 1B).
Furthermore, in samples where array-based DNA methylation
data were also available, including a summary promoter
methylation feature for each gene led to significantly improved
performance. We examined the regression models learned
when we included methylation as a feature and found that the
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Figure2 Sparse regression models predict differential expression of held-out genes and subtypes of tumor samples. (A) Plot showing Spearman correlations between
predicted and actual gene expression changes for all samples, sorted based on performance of the group lasso model using copy numbers, TF binding sites, and miRNA
binding sites. For each method and each sample, the Spearman correlation is computed using 10-fold cross-validation on held-out genes. Using only TFs and miRNAs
as features is significantly better than random (P<2.2e — 16, Wilcoxon signed-rank test); adding copy numbers for the full sample lasso model significantly improves
cross-validation performance over using only TFs and miRNAs (P < 2.2e — 16), while the group lasso approach outperforms the full lasso model (P< 2.2e — 16). TCGA
subtypes are shown in the top bar. Cross-validation performance is uniform across the three main subtypes. (B) Unsupervised hierarchical clustering of tumors of
proneural and mesenchymal subtypes by their sample-specific lasso model coefficients (shown as columns in the heatmap) separates proneural from mesenchymal
samples. The clustering was performed using all features, but for clarity only the features with largest mean aggregate squared error changes (Figure 3A) are shown in

the heatmap.
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corresponding model coefficients were large negative values in
all samples. The negative sign is consistent with the role of
promoter methylation in repression of gene expression
(Supplementary Figure 1C).

Next, we examined whether the regression models reflected
existing expression-based subtype definitions. Even though
the regression models can explain a significant part of tumor-
versus-normal expression changes, it is not clear a priori that
differences between regression models will coincide with
different subtype assignments. For example, it is possible that
expression subtypes are dominated by different patterns of
large-scale copy number aberrations, which are absorbed into
a single feature in our regression models, or reflect different
degrees of stromal contamination. However, we found that
clustering the samples by their regression models—that is,
representing each sample by its sparse vector of regression
coefficients for TFs and miRNAs—recovered to some extent
the distinction between subtypes; in particular, proneural
samples were well separated from mesenchymal samples,
while classical samples appeared to be an intermediate
category between the other two (Supplementary Figure 2A).
In fact, when we reclustered after removing classical samples,
we found that the regression models for proneural and
mesenchymal samples cleanly separated into two groups,
with only a few samples clustering into the wrong group
(Figure 2B; adjusted Rand index 0.8233). Interestingly, these
results are supported by a recent analysis that found the
proneural and mesenchymal transcriptomic subtypes to be the
only statistically stable categories that could be reproduced
over data sets, while other proposed categories (classical,
neural, and proliferative) (Phillips et al, 2006; Verhaak et al,
2010) were not consistent (Huse et al, 2011). Our findings
further suggest that distinct transcriptional and miRNA-
mediated regulatory programs underlie these two transcrip-
tomic subtypes. We note that regression models trained on
randomized motif information did not cluster by subtype or
recover the difference between proneural versus mesenchymal
subtypes, showing that the correlation between regulatory
models and subtype annotations depends on having mean-
ingful regulatory information and is not the result of other
systematic biases (Supplementary Figure 2B; adjusted Rand
index 0.231). Furthermore, the distinction between the two
subtypes is not recovered by clustering based on TF and
microRNA expression (Supplementary Figure 2C; adjusted
Rand index 0.01).

Classifying tumors into existing expression subtypes is not
the goal of our study. However, as a sanity check, we decided
to assess how well the lasso models can predict subtype-
specific expression changes and generalize to unseen data. We
used the average proneural, classical, and mesenchymal
regression models from our training set as prototype sub-
type-specific models to predict expression-based subtypes on a
test set of an additional 160 TCGA GBM tumors. The test set
tumors were labeled as proneural, classical, or mesenchymal
based on signatures of small gene sets (Supplementary
Table 1) that were previously defined to represent the three
subtypes (Verhaak et al, 2010). For each test sample, we
computed the squared error for each of the three average
subtype models in explaining the tumor sample’s expression
changes. The average model that minimized the squared
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error was predicted as the subtype label for the sample. This
approach led to a good classification accuracy of 78.9%
(Supplementary Figure 2D), again with the most errors in the
classical subtype. Since the subtypes were labeled by a gene
set defined on the training set, these results give a proof of
principle that our regulatory models have predictive power to
recover proneural and mesenchymal transcriptomic subtypes.

Joint learning of tumor models captures subtype-
specific regulatory programs in GBM

With these results in hand, we concluded that (i) our sparse
regression models do indeed explain a meaningful part of the
dysregulation of gene expression in glioblastoma, based on
their ability to predict tumor versus normal fold changes on
held-out genes; and (ii) the regression models also capture
existing definitions of transcriptomic subtypes. We therefore
implemented a multitask group lasso approach (Kim and Xing,
2010) to learn regression models for all samples at the same
time while encoding subtype assignments. This approach
allows us to share information across samples and use the
structure of the optimization problem to identify regulators
(miRNAs and TFs) that act in a subtype-specific or common
manner. More precisely, we use a group lasso or mixed L,/L;
regularization function (Kim and Xing, 2010), where we
impose groupings of the regression coefficients corresponding
to the same regulator across (i) all samples in each subtype
or (ii) across the whole data set and we encode each group
as an L, constraint (Materials and methods; Supplementary
Figure 3). This constraint structure encourages a miRNA or TF
either to have a zero regression coefficient across all samples
of a subtype (or all samples in the data set) or to be chosen
consistently with non-zero coefficient across the subtype
(or data set).

As expected, the group lasso approach produced regression
models that were more consistent across subtypes, and
clustering samples by their regression model vectors now
recovered clusters corresponding to proneural, classical, and
mesenchymal subtypes (Supplementary Figure 4B). More
interestingly, we also obtained a small improvement in
prediction performance in 10-fold cross-validation on held-
out genes, suggesting that sharing information across samples
while encoding subtype assignments leads to more accurate
regulatory models (Supplementary Figure 4A). By contrast,
when we used group lasso without subtype labels, that is,
sharing information but not allowing regulators to be subtype
specific, we did not see any significant improvement in cross-
validation performance (P<0.41, Wilcoxon signed-rank test).

Feature analysis recovers common and subtype-
specific drivers of expression changes

While group lasso gave sparse regression models for indivi-
dual samples (only a few TFs/miRNAs with non-zero
regression coefficients) and improved consistency across
subtypes, we wanted to determine the most statistically robust
subtype-specific and common regulators contained in our
models. To this end, we performed a feature dependency
analysis to measure the extent of gene expression changes
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Figure 3 Feature analysis of group models identifies common and subtype-specific regulators and their target gene sets. (A) Regulators are ranked based on increase
in squared error across samples of a subtype after excluding the regulator from regression models. Candidate regulators for each subtype are identified at an FDR of
10% relative to regression models trained on randomized data. The plot of aggregate error changes for the proneural subtype is shown. (B) Gene sets associated with
each candidate regulator are determined similarly by excluding the regulator from regression models and identifying genes whose squared error across samples
increases (using an FDR of 10%). The distribution of gene expression changes is shown for all genes, all targets based on motif hits, and the gene set for GABP, a
candidate regulator of proneural subtype, across TCGA proneural tumors. GABP motif-based targets are significantly upregulated compared with all genes
(P<6.8e — 8, Kolmogorov-Smirnov test); GABP’s gene set is more strongly upregulated than the motif-based targets (P<2.2e — 16) in both training samples and
held-out test samples. (C) The model coefficients of miR-132, a proneural-specific candidate regulator, are predictive of survival in the proneural GBM subtype. Patients
with high model coefficient (> 55th percentile) show a significantly higher median survival time compared with patients with low model coefficient (< 45th percentile;
P<7e —4, log-rank test). (D) Venn diagram showing the candidate regulators across classical, mesenchymal, and proneural subtypes. Regulators with target
upregulation are shown in brown and with target downregulation in blue. A number of regulators are common for all subtypes, while there are no candidate regulators

specific to the proneural and mesenchymal subtypes alone.

explained by each regulator. In this procedure, we set the
regression coefficient of each single regulator to zero for all
samples belonging to a particular subtype and computed the
change in total square loss over all genes in these samples. Key
regulators are those whose removal incurs a large increase in
loss over samples in the subtype. We identified subtype-specific
candidate regulators by a threshold corresponding to FDR
of 10% determined by training group regression models on
randomized versions of the feature matrix (see Materials and
methods). Figure 3A shows the results of feature dependency
analysis for the proneural subtype, with miRNAs and TFs sorted
by the increase in total square loss incurred by their individual
removal from the model. Most regulators are not chosen in
any of the proneural regression models and therefore lead to
zero change in loss, while only a handful of key regulators—
including miR-124, miR-132 and the transcriptional regulators
Yin Yang-1 (YY1) and GABP—pass the FDR cutoff.
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Similarly, we can use feature dependency analysis to assign
target gene sets to each candidate regulator. As input to the
model, each TF or miRNA regulator has an initial motif-based
target set of genes, based on binding site hits in the promoter or
3'UTR, respectively. However, these initial motif-based target
assignments are noisy and not context specific; a more
confident target gene set can be determined by identifying
genes for which the model error increases when the regulator
is removed. As before, a significance threshold was estimated
based on the total error changes for individual genes across
randomized regression models when a regulator is removed
(see Materials and methods), and we assigned target gene sets
to regulators using an FDR threshold of 10%.

Figure 3B shows the distribution of proneural tumor
expression changes for the motif-based targets of GABP and
the gene set of GABP as determined by feature dependency
analysis of the model, both across proneural training samples
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and test samples, as compared with the full set of genes. While
the motif-based targets of GABP, a significant regulator
common to all three subtypes, are upregulated across both
training and test samples, the upregulation of the computed
gene set is much more significant in both the training and test
sets (P<2.2e — 16, Kolmogorov-Smirnov test). The gene sets
associated with all the regulators are listed in Supplementary
Table 4. To investigate the stability of specific inferred
regulator/target pairs, we can examine distribution of reg-
ulator coefficients over tumor samples as well as the resulting
change in error for a specific target when the regulator is
removed from the model. For example, while there is
variability of miR-132’s regression coefficients within each
subtype, the coefficient values are consistently higher in the
proneural subtype and correlate with regulation of inferred
target SOX11 (Supplementary Figure 5A). Similarly, REST is
identified as a common regulator but has largest negative
regression coefficients in the mesenchymal subtype, tracking
with stronger inferred regulation of SST (Supplementary
Figure 5B). A summary of the model coefficients across all
subtypes has been tabulated in Supplementary Table 5.
Interestingly, we found that the inferred dysregulation of
miR-132, a proneural-specific candidate regulator, correlates
with survival in the proneural subtype. Patients inferred to have
high model coefficients for miR-132 (> 55th percentile) show a
significantly higher median survival time compared with patients
with low miR-132 model coefficients (<45th percentile) in the
joint model (P<7e—4, log-rank test; Figure 3C). Moreover,
a similar analysis based on miR-132 expression instead of
miR-132 regulation does not show a significant difference in
survival (P<0.1, log-rank test; Supplementary Figure 6A).
The G-CIMP phenotype, which is enriched in the proneural
subtype, is also associated with higher survival. In order to
determine if the miR-132-related survival difference coincides
with G-CIMP status, we trained regression models on all
proneural samples, including those in the test set. We did not
find a significant difference between miR-132 model coefficients
between G-CIMP and non-G-CIMP proneural samples (P<0.47,
Wilcoxon rank-sum test). However, we confirmed that miR-132
retains its predictive value for survival in this larger data set
(P<0.02, log-rank test). We also performed a similar analysis
on an independent data set (Murat et al, 2008). This data set
profiles only gene expression and not copy numbers or miRNA
expression. Moreover, the data set is smaller in size (N =80),
which limits the power of survival analysis. We classified
the patients in this data set to proneural, mesenchymal, and
classical subtypes using the gene signature defined in Verhaak
et al (2010) (Materials and methods; Supplementary Table 6)
and ran our sample-by-sample regression models for each
patient. We observe that proneural patients with high miR-132
model coefficient showed a trend toward better survival
(Supplementary Figure 6B), recovering a pattern observed in
the training and test TCGA data sets, though the survival
difference was not statistically significant. It should be noted
that TCGA proneural patients show a significantly higher survival
compared with other subtypes (Supplementary Figure 6C), but
the corresponding survival difference was not statistically
significant in the Murat data set (Supplementary Figure 6D).
Figure 3D summarizes the key shared and subtype-specific
regulators satisfying a 10 % FDR cutoff for the proneural versus
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mesenchymal subtypes identified by our analysis; no sig-
nificant regulators were found to be specific to the classical
subtype alone (Supplementary Figure 7). Regulators that are
shared among all three subtypes are considered as common
regulators and include REST, known to be upregulated in brain
tumors (Majumder, 2006); E2F factors, regulators of cell cycle
and part of the Rb pathway (Polager and Ginsberg, 2009); and
miR-124 that is downregulated in GBM (Silber et al, 2008).
Some of the proneural-specific regulators include YY1, a driver
of oligodendrocyte differentiation (He et al, 2007); SP1, a
transcriptional regulator implicated in cell growth, apoptosis,
and differentiation (Li and Davie, 2010); and miR-19, which
has been observed as upregulated in gliomas (Malzkorn et al,
2010). CEPB, which was previously described as a regulator of
mesenchymal transformation in human gliomas (Carro et al,
2010), is inferred as a mesenchymal-specific regulator. We note
that using the group lasso model in place of the sample-by-
sample lasso approach leads to reduction in the number
of regulators identified by feature dependency analysis
(Supplementary Figure 4C). Therefore, incorporating subtype
assignments improves the consistency of the regulatory
models to identify a smaller set of confident regulators.

Gene sets for proneural regulators display
coherent functions and are consistent
with in vivo expression changes in mouse
PDGF-driven tumors

Our reference normal brain samples from TCGA are not ideal
for modeling cancer-specific expression changes, since they
are composed of cells of multiple lineages while the tumors are
derived from glial cells. We next addressed this issue directly
through analysis of in vivo expression changes in a mouse
model of PDGF-driven tumors. This experimental system
allows us to sort for the relevant tumor and normal cell
populations for a clean comparison of in vivo expression
changes.

Evidence from expression analysis of human proneural
tumors and tumors from mouse models of PDGF-driven GBM
suggests that proneural tumors arise from oligodendrocyte
progenitor cells (OPCs) or from other glial precursors that then
acquire OPC markers (Verhaak et al, 2010). To examine the
candidate proneural regulators and corresponding target gene
sets derived from GBM tumor data in a cleaner experimental
setting, we examined expression data in relevant cell popula-
tions extracted from tumors and normal tissue in a mouse
model. Specifically, we assessed whether human gene set
expression patterns of differential regulation were consistent
with in vivo expression changes of their mouse homologs in
PDGF-driven, Olig2 + mouse tumor cells relative to mouse
OPCs.

For example, Figure 4A shows the cumulative distribution of
expression changes in PDGF-driven mouse tumor cells relative
to OPCs for predicted targets of E2F, a candidate transcrip-
tional regulator (or rather, set of regulators sharing a motif)
common to all GBM subtypes. E2F is associated with
upregulation of its targets in our regulatory model, and
consistent with this role, we see a significant upregulation of
mouse genes homologous to motif-based targets of E2F
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Figure 4 Gene sets for candidate proneural regulators display coherent functional annotations and consistent in vivo expression changes in PDGF-driven mouse
tumors. (A) Targets of E2F, a proneural candidate regulator, show significant upregulation in PDGF-driven Olig2 + mouse tumor cells relative to mouse oligodendrocyte
progenitor cells (OPCs) (P < 2e — 4, Kolmogorov-Smirmov test). Upregulation of the proneural E2F gene set is stronger than the motif-based target set (P<4.5e — 12).
Human genes were mapped to mouse genes using Homologene. (B) Targets of SP1 show significant downregulation in mouse tumor cells relative to OPCs
(P<3.5e — 4). Downregulation of proneural SP1 gene set is stronger than motif-based target set (P<1.2e —9). (C) The table lists candidate proneural regulators
selected at 10% FDR. Functional annotations were determined by looking for overrepresented terms from the Gene Ontology ‘Biological Process’ in gene sets
associated with the candidate regulator. Regulators concordant with PDGF-driven Olig2 + mouse tumor data are shown with rows highlighted in brown. Proneural
regulators are ranked by their significance in the regression model, assessed by empirical P-values relative to the previously described randomized models and corrected

for multiple-hypothesis testing using the Benjamini-Hochberg procedure.

relative to all genes in the mouse tumor data (P<2e—4,
Kolmogorov-Smirnov test). Moreover, consistent with the
pattern in human data, mouse genes homologous to the E2F
regulated gene set are even more strongly upregulated than the
motif-based target set (P<4.5e—12, Kolmogorov-Smirnov
test). This gene set is significantly enriched for genes involved
in DNA replication and chromatin organization, consistent
with the known role of some E2F TFs (Polager and Ginsberg,
2009). Therefore, the computational model together with the
concordance of expression patterns suggests that E2F-
mediated upregulation of genes involved in DNA replication
and chromatin organization is a shared process in human
proneural and mouse PDGF-driven tumors. Similarly, expres-
sion changes in mouse tumors cells support the predicted
dysregulation of the TF SP1 in proneural GBM (Figure 4B).
Orthologs of the motif-based targets of SP1 are significantly
downregulated in PDGF-driven tumor cells (P<3.5e—4,
Kolmogorov-Smirnov test), and orthologs of the regulated
target set of SP1, as determined by the model, are strongly
downregulated (P<1.2e—9, Kolmogorov-Smirnov test),
consistent with model predictions.
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Figure 4C summarizes the enriched functional annotations
for the gene sets of all proneural TFs and miRNAs (see
Supplementary Table 7 for ontologies associated with other
subtypes) as well as the concordance of their expression
changes in human and mouse tumors. Interestingly, several
regulators including YY1, E2F, and MYBL2 have annotations
associated with DNA replication, chromatin organization, and
RNA metabolism, which may be related to cell cycle and
growth. Almost all of the most significant proneural regulators
(10/13) have gene sets with consistent patterns of differential
regulation in human and mouse tumor data (highlighted rows
in Figure 4C and Supplementary Table 8).

Overexpression of miR-124 and miR-132 in
neurospheres drives expression changes
concordant with their dysregulation in
proneural tumors

Our regression modeling identified a number of common
and proneural-specific miRNAs as statistically significant
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regulators of tumor expression changes, meaning that the
presence of conserved binding sites for these miRNAs in the
3'UTRs of genes appears as consistent explanatory variables
for gene differential expression across tumors. To confirm
that dysregulation of these miRNAs indeed drive expression
changes consistent with those observed in tumors, we tested
two candidate proneural miRNA regulators by overexpressing
them in PDGFRA-amplified neurospheres (Materials and
methods), an in vitro model for the proneural subtype. These
candidates were miR-124, predicted as a direct regulator of
tumor expression changes across all subtypes; and miR-132,
identified as a proneural-specific candidate regulator whose
regression coefficient correlates with better survival (Figure 3C).

Both miR-124 and miR-132 are underexpressed in proneural
tumors relative to normal brain tissue. Therefore, if they are
important drivers of expression, we expect that their over-
expression in neurospheres would lead to repression of target
genes that are upregulated in tumors, and through secondary
effects, upregulation of genes that are downregulated in tumors.
As controls, we tested two miRNAs, miR-380 and miR-448, that
are underexpressed in proneural tumors but not selected in our
regression models. These controls directly test the value of
integrative modeling: our model predicts that although these
miRNAs are differentially expressed in GBM, they do not explain
differential expression of their target mRNAs and therefore are
unlikely to drive expression changes in tumors. Finally, we also
tested miR-433, a less confident candidate regulator that was
selected in the sample-by-sample lasso approach for some
proneural tumors but did not pass the FDR cutoff in the group
lasso approach. We verified the efficiency of all the miRNA
transfections—both the predicted driver miRNAs and control
miRNAs—by qPCR, and we further confirmed in all cases that
predicted miRNA targets were significantly downregulated
24 h after transfection (Supplementary Figure 8). In particular,
this analysis rules out the possibility that our target prediction
method was less accurate for the control miRNAs than for
miR-124 and miR-132.

We then used the expression changes from the tumorsphere
experiments as experimentally defined signatures for direct
and secondary effects of the miRNAs, and we asked whether
proneural tumor versus normal expression changes reflected
these signatures. Figure SA demonstrates the concordance of
expression changes induced by overexpression of miR-124,
a candidate regulator common to all GBM subtypes, in
proneural neurospheres with expression changes in proneural
tumors versus normal brain. The plot shows the cumulative
distributions of expression changes across proneural TCGA
samples for (i) predicted targets of miR-124 that are down-
regulated (FDR-corrected P<0.05) in neurospheres after miR-
124 transfection; and (ii) genes that are upregulated in
neurospheres after miR-124 transfection (FDR-corrected
P<0.05). We filtered for computationally predicted targets in
group (i) in order to get a signature for direct miRNA
regulation; meanwhile, group (ii) serves as a signature for
secondary effects of miRNA regulation. As expected, we see
concordance of expression changes, that is, both gene sets
strongly shift in expression in the tumor data in the opposite
direction from the neurosphere data (P<0.01, Kolmogorov-
Smirnov test; Supplementary Table 9). Therefore, overexpres-
sion of miR-124 appears to partially reverse expression
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changes seen in proneural GBM samples. Figure 5B shows a
similar concordance between expression changes following
miR-132 overexpression in neurospheres and proneural tumor
data: predicted miR-132 targets that are downregulated in the
transfection experiment are upregulated in proneural TCGA
samples (P<0.01); and genes that are upregulated post-
transfections are downregulated in the proneural tumor data
(P<0.01).

Figure SC summarizes the concordance between miRNA
overexpression experiments and TCGA proneural tumor data
(see Supplementary Figure 9 and Supplementary Table 9).
Both predicted proneural regulators, miR-124 and miR-132,
show full concordance between neurosphere and proneural
tumor data. By contrast, overexpressing the control miRNAs
(miR-380 and miR-448) did not lead to similar concordance
with expression patterns in proneural tumors: (i) for both
controls, downregulated targets of the control miRNAs were
not significantly upregulated in the tumor data; and (ii) genes
upregulated after transfection of the control miRNAs were
either not significantly downregulated in proneural tumors
(miR-380) or these genes were more significantly upregulated
in proneural tumors than downregulated (miR-448). In other
words, overexpression of these control miRNAs leads to
gene expression changes that appear to be poorly related
to differential expression patterns in proneural tumors
(Supplementary Table 9). The less confidently predicted
regulator, miR-433, which was identified by feature depen-
dency analysis in the sample-by-sample models but not in the
group model, did not show strong concordance (using thresh-
old of P<0.01, Figure 5C, Supplementary Table 9). As a final
check to remove dependence on target prediction in the
concordance analysis, we also considered downregulated
genes each transfection experiment without filtering for target
sites as a signature of miRNA-induced repression (both direct
and indirect). Since miRNA transfections lead to very high
overexpression of miRNAs and downregulation of a broad set
of genes, we took genes that were most strongly down-
regulated (FDR-corrected P<0.001) in each transfection and
found strong concordance with proneural tumor-versus-
normal expression changes for miR-124 (P<0.01) and
significant concordance for miR-132 and miR-433 (P<0.05)
but no concordance for either of the two controls
(Supplementary Table 9).

Another intriguing clue about the potential functional
relevance of miR-124 and miR-132 was the coherence of gene
annotation enrichments for the sets of upregulated and
downregulated genes in the transfection experiments. Down-
regulated genes after overexpression of miR-124 were strongly
enriched for DNA replication annotations (P<3e — 13, FDR-
corrected P-value) and showed significant enrichments for
multiple terms associated with cell cycle, cell proliferation,
and DNA repair (P<0.05, corrected P-value). In order to verify
this experimentally, we performed cell proliferation assays in
the neurospheres following miR-124 and miR-132 transfec-
tions. Transfection of miR-124 resulted in a significant
reduction in number of cells in S phase (P<2e—75, t-test)
accompanied by a similarly significant increase in the number
of cells in GO/G1 phase (P<2e—5, t-test) compared with
negative controls (Figure 5D). No differences were found in
G2/M or sub-G1 phase of the cell cycle. By contrast, we do not
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Figure 5 Overexpression of candidate proneural miRNAs in neurospheres drives expression changes consistent with their predicted role in tumors. (A) Expression
changes after miR-124 overexpression in a proneural (PDGFRA-amplified) neurosphere were concordant with miR-124 associated tumor versus normal expression
changes, where miR-124 is underexpressed. Targets of miR-124 that were downregulated in the neurosphere model and genes those were upregulated after miR-124
transfection are upregulated and downregulated, respectively, in TCGA proneural samples. These results suggest that overexpression of miR-124 in neurospheres
partially reverses the expression changes in proneural tumors. (B) miR-132 also shows expression concordance in proneural tumors and miR-132 overexpression in
neurospheres. (C) Common regulator miR-124 and proneural-specific regulator miR-132 show concordant gene expression changes between transfection in
neurosphere and TCGA proneural samples. Two control microRNAs (miR-380 and miR-448), both downregulated in proneural samples but not selected in the
regression analysis, do not show this concordance. A final tested miRNA, miR-443, was downregulated in proneural samples and chosen as a regulator by sample-
based regression models but not the group lasso method and does not show significant concordance between expression changes (Supplementary Table 9). (D) Cell
proliferation analysis demonstrates a significant decrease in number of cells in S phase and significant increase in number of cells in GO/G1 phase in miR-124
transfection compared with negative controls. These results are consistent with gene ontology analysis of miR-124 transfection data. Values represent mean + standard
deviation of three replicate experiments (*P<2e — 5, ttest). (E) Examination of identified regulators and existing literature suggests a proneural-specific core regulatory
network. REST, a repressor of neural genes in non-neuronal cells, is known to be upregulated in brain tumors. YY1, inferred as an activator in proneural tumors, is a
known activator of REST. Upregulation of REST may lead to downregulation of the miRNAs miR-124 (a predicted regulator in all subtypes) and miR-132 (a predicted
regulator specific to proneural subtype). Downregulation of miR-124 and miR-132 may contribute to inhibition of differentiation and proliferation in tumors. Source data
is available for this figure in the Supplementary Information.

observe any reproducible changes in cell-cycle phase follow- experiments in glioma cell lines (Silber et al, 2008) and
ing the miR-132 transfection (Figure 5D). Representative flow demonstrate the ability of our regression model to uncover key
cytometry plots are shown in Supplementary Figure 11. These regulators and their associated gene sets.

experimental observations are consistent with functions Genes downregulated after overexpression of miR-132
associated to miR-124 through previous overexpression showed some enrichment for terms associated with regulation
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of cell growth and cell size (P<0.1, corrected P-value). By
contrast, neither control miRNA nor the less confident
regulator showed enrichment for any functional terms after
correction for multiple hypothesis testing even at a mild
significance threshold (P<0.1), suggesting that overexpres-
sion of these miRNAs lead to functionally incoherent expres-
sion changes and that therefore, although these miRNAs are
all underexpressed in proneural tumors, they may not be
important for driving tumor-related expression programs.

To determine the most relevant functions of miR-132 for
glioma biology, we went back to the TCGA tumor data and
asked which genes in the regulated target set for miR-132 and
other proneural regulators were specifically dysregulated in
the proneural subtype. That is, if the regulator was associated
with upregulation (resp. downregulation) of its associated
target gene set, we determined which genes were specifically
overexpressed (resp. underexpressed) in proneural samples
relative to other samples (with P<0.05, corrected P-value).
Interestingly, miR-132 along with NFYB and YY1 are the
regulators with the greatest degree of proneural specificity,
defined as the fraction of genes in their target set that
are specifically dysregulated in the proneural subtype
(Supplementary Figure 10).

We therefore repeated gene ontology analysis for genes that
are downregulated in the miR-132 transfection experiment
and also show proneural-specific upregulation in tumor data.
This analysis gave a significant enrichment for ontologies
related to chromosome organization (P<0.05, corrected
P-value). In particular, genes contributing to the gene
ontology term ‘chromosome organization’ overlapped with
those contributing to the same term in the miR-132 regulated
gene set (P<0.031, hypergeometric test). Restricting the
gene ontology analysis to genes upregulated in proneural
tumors compared with normal brain showed a similar
significance for chromatin-related ontologies (P<0.05,
corrected P-value). Notably, genes upregulated after trans-
fection of miR-132 were also significantly enriched for
genes involved in DNA packaging, chromatin assembly/
disassembly, nucleosome assembly, and other chromatin-
related functions (P<0.05, corrected P-value). These enrich-
ments suggest that miR-132 may regulate chromatin state
via genes downstream of its direct targets.

Interestingly, the miR-132 regulated gene set includes
KDMS5A (a histone demethylase) and EP300, which are
both involved in epigenetic regulation of gene expression
(Lopez-Bigas et al, 2008; Visel et al, 2009) and are validated
targets of miR-132 (Alvarez-Saavedra et al, 2011). KDM5A
is also marginally downregulated after miR-132 trans-
fection (FDR-corrected P<0.075). To explore the connection
between miR-132 and KDMSA further, we derived a motif
for KDMSA from ChIP-seq data in human embryonic stem
cells (Ram et al, 2011). We confirmed that the top 500
predicted targets of KDMSA are modestly but significantly
upregulated in proneural tumors (P<7e— 7, Kolmogorov-
Smirnov test; Supplementary Figure 12). Therefore, the
most relevant functions associated with lowered expression
of miR-132 in proneural tumors appear to be related to
chromatin remodeling, and expression changes associated
with these functions are partially reversed when miR-132
is restored.
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Discussion

Model for a core regulatory network in proneural
GBM

Our experimental results combined with the existing literature
on our predicted proneural regulators suggest a core regu-
latory network underlying expression changes in proneural
GBM where miRNAs miR-124 and miR-132 play key roles
(Figure 5E). In the model, the hub of this core network is
the REST/CoREST complex. REST is a repressor of neuronal
genes in non-neuronal cells and acts as part of a complex
that includes CoREST and Sin3 (Andres et al, 1999; Grimes
et al, 2000). REST is known to be upregulated in brain
tumors (Majumder, 2006) and is identified in our analysis
as a common regulator whose targets are downregulated in
all subtypes. The transcription factor YY1 is identified as an
activator of gene expression in the proneural subtype. YY1
interacts with histone deacetylases to drive oligodendrocytic
differentiation (He et al, 2007). YY1 is also a direct regulator
of REST (Jiang et al, 2008).

REST is known to downregulate the miRNAs miR-124 and
miR-132 (Conaco et al, 2006; Johnson et al, 2008), both of
which are identified as regulators in GBM, miR-124 across
subtypes and miR-132 in the proneural subtype only. The
targets of these miRNAs are predicted to be upregulated in
GBM. miR-124 has a feedback loop and downregulates
CoREST. CoREST along with PTBP1, LAMCI1, SCP1, and
CDK4 are all included in the target gene set associated with
miR-124 by our model. Previous studies have established that
the loss of miR-124 regulation (i) of CoREST and SCP1
enhances REST complex function; (ii) of CDK4, a member of
cyclin-dependent kinases, leads to cell-cycle progression; and
(iii) of PTBP1 leads to differentiation inhibition (Makeyev et al,
2007). PTBP1, LAMCI, and SCP1 are validated targets of miR-
124 (Visvanathan et al, 2007).

Similarly, the target gene set for miR-132 also includes
validated targets SOX2, LIN28, along with KDM5A and EP300.
SOX2 and LIN28 are important stem cell factors (Marson et al,
2008). Evidence suggests that inhibition of SOX2 leads to
reduced growth in glioma cell lines (Gangemi et al, 2009).
Therefore, in this core network model for the proneural
subtype, overexpression of REST, due in part to transcriptional
upregulation by YY1, leads both to proliferation and inhibition
of differentiation via downregulation of miR-124 and to
expression of stem cell factors and epigenetic changes via
downregulation of miR-132.

miRNAs with incoherent target regulation in GBM
and development

Our regression modeling filters for miRNAs that are differen-
tially expressed in GBM subtypes relative to normal tissue but
does not require that the inferred regression coefficient for a
miRNA is coherent with its change in expression. In most
cases, our model does in fact identify miRNA regulators with
coherent target regulation; for example, both miR-124 and
miR-132 are more weakly expressed in tumors relative normal,
and coherently, their targets are upregulated.

However, we do identify several miRNAs as significant
regulators with incoherent target regulation. The most
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prominent of these is miR-218, which is downregulated in
tumor versus normal while its predicted targets are also
significantly downregulated (Supplementary Figure 13). Inter-
estingly, a study of miRNA expression changes in oligoden-
drocyte development observed that miR-218 is expressed both
in the oligodendrocyte lineage and in neuronal cells; however,
the expression levels of predicted miR-218 targets display
opposite biases in the oligodendrocytes versus neurons (Lau
et al, 2008). Namely, in neuronal cells, predicted miR-218
targets are enriched among highly expressed genes (Lau et al,
2008), while in the oligodendrocyte lineage, the target bias is
reversed, with miR-218 targets enriched among the most
weakly expressed genes. The authors speculate that miR-218
interacts with transcriptional regulatory networks in cell type-
specific ways, dampening transcriptionally downregulated
genes to reinforce transcriptional programs in oligodendro-
cytes while fine-tuning gene expression levels (‘buffering
transcriptional noise’) in neuronal cells.

Our analysis does not use the notion of target expression
bias or directly address the above hypothesis of cell type-
specific interaction of miRNAs with transcriptional networks.
Instead, we infer the differential activity of miRNAs and TFs
based on expression changes of all targets through a sparse
regression approach. However, as the tumor samples are
composed of glial cells, while our normal brain reference
includes glial and neuronal cells, our ‘incoherent’ inferred role
for miR-218 may be connected with previous observations
about the cell type-specific function of miR-218 in oligoden-
drocyte versus neuronal cells.

Modeling expression changes versus
classification approaches

It is useful to note that our integrated approach does not solve
the same problem as a classification approach. In a classifica-
tion problem, one accepts that the class labels—here,
proneural versus classical versus mesenchymal—are valid,
and one trains a model that can accurately predict the class
from features of one or more kinds of molecular profiling
experiments (e.g., mRNA expression levels and microRNA
expression levels). It is standard to perform feature selection to
extract a smaller number of ‘biomarkers’ that still accurately
predict the class label. Typically, many different ‘signatures’
containing different sets of features have similar prediction
accuracy, so inclusion of a gene/microRNA in a discriminative
signature is no guarantee that this biomarker is intrinsically
important to the biology of a subtype. Moreover, in the setting
of expression-based cancer subtypes discovered by clustering,
we have a problem of circularity: successful discrimination
between subtypes mainly shows that whatever (possibly
subtle) expression differences the clustering algorithm uses
to make cluster assignments can be learned and reproduced by
the classifier. We do not know a priori that these expression
clusters represent biologically distinct subtypes; they may
arise for more mundane reasons, such as degree of stromal
contamination.

In our integrated approach, we can ask whether different
expression subtypes are biologically distinct in terms of
transcriptional and microRNA-mediated regulation. Rather
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than identifying ‘biomarkers’ that may predict a subtype
without necessarily being biologically important, we find
microRNAs and TFs that can explain global tumor versus
normal changes in gene expression within the subtype. For
example, we find strong differences in the gene regulation
models for proneural and mesenchymal tumors, but we find
that the classical tumors appear to be a mixture of the other
subtypes, at least in terms of gene regulation. Moreover, when
we encode the three classes in our group lasso approach, we
find no microRNA/TF regulators that are unique to the
classical subtype. Our results are consistent with a recent
meta-analysis of GBM expression subtypes by several pioneers
of GBM classification, who argued that the proneural and
mesenchymal subtypes are the two meaningful subtypes that
are consistent across studies (Huse et al, 2011).

Improved modeling of miRNA-mediated regulation
with sparse regression

The typical analysis of parallel miRNA and mRNA profiles
from tumor data or normal tissues involves examination of
pairwise miRNA-target correlations across samples (Wang and
Li, 2009; Nunez-Iglesias et al, 2010). However, looking for
pairwise anti-correlation between miRNAs and predicted
targets introduces thousands of non-independent statistical
tests, making it difficult to avoid false discoveries. Meanwhile,
the correlation between a miRNA and its target across samples
may be weak due to the simultaneous regulation by other
miRNAs and TFs and also to the fact that miRNA-mediated
downregulation at the mRNA level is often modest in
magnitude.

We have developed a more powerful and principled
statistical approach to identify significant miRNAs and their
dysregulated gene sets in tumor profiles. In particular, we take
statistical advantage of the fact that aberrantly expressed
miRNAs can have broad but subtle effects—contributing to
relatively small changes in expression for hundreds of genes.
By correlating the presence of 3’UTR miRNA binding sites with
changes in expression across thousands of genes, our
regression approach is able to accurately identify dysregulated
miRNAs. Moreover, our framework naturally extends to
modeling transcriptional regulation via sequence information
in the promoter, and after filtering by DNasel hypersensitive
regions, we find that TF binding information is surprisingly
informative. Finally, by imposing sparsity in the regression
and sharing information across tumor samples, we improve
the stability of our models to determine the most statistically
confident dysregulated TFs and miRNAs.

The use of regression and other supervised approaches to
correlate with the presence of regulatory sequences with
expression changes originated 10 years ago in early motif
discovery methods in yeast (Bussemaker et al, 2001; Conlon
et al, 2003). These ideas were eventually developed into more
ambitious methods for learning transcriptional regulatory
programs in yeast, other model organisms, and human cell
lines (Segal et al, 2003; Kundaje et al, 2008; Suzuki et al,
2009; Li et al, 2010). In recent computational studies of
miRNA-mediated regulation, regression methods have been
to improve target prediction by training on genome-wide
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expression data following miRNA overexpression experiments
(Grimson et al, 2007; Betel et al, 2010). Our study is the first to
show that the dysregulation of gene expression in human
tumors can also be dissected in terms of the effects of
regulatory elements, in both promoter sequences and 3'UTRs,
by suitably incorporating copy number effects and general-
izing the algorithmic approach. Our method provides a flexible
integrative framework for cancer genomics. We anticipate that
our approach will be broadly applicable to the tumor data sets
of growing size and diversity that are currently being
generated by worldwide cancer genomics efforts.

Materials and methods

Data and preprocessing

We downloaded all the GBM tumor data from the TCGA data portal
(The Cancer Genome Atlas Research Network, 2011). We used affy, a
Bioconductor package (Gautier et al, 2004), for RMA background
correction and quantile normalization to derive log gene expression
values for tumor and normal samples. A similar preprocessing
procedure was performed on the miRNA expression data using
AgiMicroRna package (Lopez-Romero, 2011).

We used level-2 copy number data and determined copy number
segments using circular binary segmentation (Venkatraman and
Olshen, 2007). These segments were mapped to Refseq genes based
on UCSC hgl8 genome assembly.

We used the Murat data set (Murat et al, 2008; GEO accession
number GSE7696) for external validation of association of survival
with miR-132 model coefficients. Data were processed as described
above.

Target prediction for TFs and miRNAs

We determined TFs targets using TRANSFAC (Kel et al, 2003) to
search for binding sites within DNasel HS sites within 2kb of
Refseq transcription start sites. DNasel HS regions were deter-
mined using the DNasel HS sequencing data from H45 glioblastoma
cell line generated by The ENCODE Project Consortium (2004).
Raw reads were aligned to hgl8 genome assembly using bowtie
(Langmead et al, 2009). Hypersensitive regions were determined
using MACS peak calling software (Zhang et al, 2008). HS regions
present in both of the two replicates were used for TF binding site
prediction.

We determined miRNA targets by searching for 7-mer seed matches
in the 3'UTR of the Refseq genes. miRNAs were grouped into families if
they shared the same seed. We restricted the search to UTR regions
conserved between human, mouse, dog, cat, and chicken.

Sample-by-sample lasso regression models

In the sample-by-sample approach, we train regression models
separately for each tumor sample, using a linear model to explain
log gene expression changes (tumor versus normal tissue) using
gene copy number, TF binding site counts in the gene’s promoter,
and miRNA binding site counts in the gene’s 3’'UTR as covariates in
the model.

The lasso regression problem amounts to minimizing the following
objective function:

MinZ(yg—w‘xg)z-i-k Z|wr|
A re{CN,miR, TF}

where the first summation is over genes with expression measure-
ments in the sample, and the second summation is the lasso
regularization term that encourages most of the regression coefficients
w'" to be zero; the regularization parameter A controls the degree of
sparsity in the trained model (Tibshirani, 1996). The regression
coefficient of each regulator (TF, miRNA) establishes the importance
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of the corresponding regulatory element for the prediction of gene
expression changes, while the sign of the coefficient can be interpreted
as the predicted direction of regulation.

Joint learning of regression models with group
lasso

To share information across samples and encode subtype information,
we used tree-guided group lasso (Kim and Xing, 2010) in a multitask
approach for jointly learning regression models for all samples.
Samples are mapped into a hierarchy of groups based on subtype, that
is, the hierarchy is a tree where leaf nodes correspond to subtype
groups and the root node represents the group of all samples
(Supplementary Figure 3A). As notation, we write G, for the group
of samples represented by vertex v in the tree. For each regulator r (TF
or miRNA), we add an L,-norm constraint over the vector of regression
coefficients for r across samples G, (Supplementary Figure 3B); adding
these constraint functions to the regression optimization problem has
the effect of grouping these coefficients (Kim and Xing, 2010), that is,
encouraging them all to be zero or all to be non-zero. The full group
lasso multitask optimization problem can be represented as:

Mv\i,n Z(y&k_wk 'xg-,k)z"'7L Zav g, 1
8.k re{CN,miR,TF} v

where k indexes the tumor samples, y,  is the expression change of
gene g in sample k, X,  is the vector of TF and miR binding site counts
for gene g and the copy number change of gene g in sample k, v ranges
over the set of the four nodes of the tree (Supplementary Figure 3B)
and G, represents the group of samples corresponding to node v. There
are now multiple regularization parameters: A is similar to the
regularization parameter for sample-by-sample lasso formulation,
while the parameters a, represent the strength of correlation within
each group. For simplicity, we take a, = a for all three subtypes, so that
we are left with just three parameters (A, a, a;) to optimize where a,
represents the strength of correlation in the root node; this choice
asserts a similar level of model consistency for each of the three
subtypes.

Feature dependency analysis

We performed a feature dependency analysis across samples to
determine regulators (TFs and miRNAs) that significantly account
for common and subtype-specific gene expression changes in the
regression models. We use a scoring technique, based on increase in
squared loss on samples belonging to a subtype when the regulator is
excluded from the learned model, to rank subtype-specific features.
The score is calculated as:

score(r,v) = 3" score(r,v.8) = 3 3 [L0gae Wi xg) ~ LVger Wi - X))
8 8 keG,

where L is squared loss and w"~? denotes the model vector obtained
from w by setting the coefficient w" to 0. This score measures the
degree of influence of the regulator in predicting the changes in gene
expression.

In order to assess the statistical significance of the feature scores, we
also trained the group lasso regression models on randomized data
using the same regularization parameters as for the real model. We
derived the randomized data by permuting the motif hit over the genes
independently for each TF/miRNA. We carried out this group lasso
training procedure on randomized data 1000 times and then computed
the resulting random score distribution for each subtype. These
distributions were used to calculate empirical P-value for each
regulator and subtype. We then used a Benjamini-Hochberg procedure
to report subtype-specific regulators at a significance threshold
corresponding to a 10% false discovery rate.

Associating target gene sets with regulators

The motif hit matrix used as input to the regression models defines
a candidate set of associations between regulators and targets.
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However, even when a TF or miRNA is identified as a significant
subtype-specific regulator, we can use a statistical dependency
analysis similar to above to determine which of the targets defined
by the motif matrix seem to be correctly associated with the regulator.
Namely, for each target gene and subtype-specific regulator, we can
compute score(r,1,8), as defined above. If removal of the regulator from
the model causes an increase in loss, across the subtype samples, for a
particular gene, then the gene is more likely to be a true target of the
regulator. We use the same randomization models as before, except
that we use scores only from the candidate regulator for computing the
subtype-specific random score distributions. Using these distributions
to estimate empirical P-values as before, we assigned target gene sets
to regulators with a 10% false discovery rate. These target sets are used
for subsequent gene ontology and pathway analysis.

Classification of test samples

An 840 gene signature has previously been defined to classify tumor
expression profiles into four transcriptomic subtypes (Verhaak et al,
2010). We used this signature to train a multi-class SVM on the training
data set (161 samples; Supplementary Table 1) using a radial basis
kernel function. The expression data were mean centered before
training. This SVM model was then used to predict subtypes on both
the TCGA test set and the Murat data set.

Gene expression analysis of Olig2 + tumor cells
and normal OPCs

Ntv-a/Ink4a/Arf” '/PTENﬂ/ ' mice, described previously (Hu et al,
2005), were bred with Olig2 bacTRAP mice (Doyle et al, 2008)
(gift from Dr Nathaniel Heintz) and gliomas were generated by
RCAS-mediated retroviral transduction by a method previously
described (Shih et al, 2004). After injection, mice were aged until
they demonstrated symptoms of disease (lethargy, weight loss, and
macrocephaly). Normal brain OPCs were collected from non-injected
4- to 8-week old Ntv-a/Ink4a/Arf’/PTEN"/0lig2-eGFP-L10a mice.
Normal brain or grossly dissected tumor tissue was dissociated
into a single cell suspension with papain by a method previously
described (Bleau et al, 2009) and Olig2 + cells were collected by
FACS (Becton-Dickinson Aria Cell Sorter). FACS-sorted cells were
collected with Trizol-LS reagent (Invitrogen), chloroform extracted,
precipitated with sodium acetate in isopropanol overnight and
purified according to manufacturer protocol (Qiagen RNeasy MinElute
Cleanup Kit). In all, 200 ng of RNA was amplified and biotin-labeled
according to manufacturer protocol (Ambion AMIL1791) and hybri-
dized to Illumina MouseRef-8 v2.0 Expression BeadChips (Rockefeller
University Genomics Resource Center). Each biological replicate
represents 1 tumor sample or 5 pooled normal brains. All animal
studies were done in accordance with protocols approved by
the Institutional Animal Care and Use Committee of Memorial
Sloan-Kettering Cancer Center and followed National Institutes of
Health guidelines for animal welfare. Genotyping primers will be
provided on request.

miRNA transfection of glioma neurospheres

The human glioma neurosphere line MSK543 (Ozawa et al, 2010) was
seeded at 200 000 cells/ml in 5 ml of neural stem cell (NSC) media plus
10% NSC proliferation supplement (Stem Cell Technologies) addition-
ally supplemented with 10 ng/ml EGF, 20 ng/ml basic FGF, 1 mg/ml
heparin. Twenty-four hours after seeding, miRNA mimetics (Thermo
Scientific) were mixed with 25pul HiPerFect Transfection Reagent
(Qiagen 301704) in 500 pl Opti-MEM reduced serum media (Invitrogen
31985), incubated for 10 min at room temperature, and added dropwise
to the cells (final miR concentration =100 nM). Cells were harvested
after 24 h and RNA was collected using the miRNeasy Mini Kit (Qiagen
217004) according to manufacturer instructions. miRNA induction was
determined by real-time PCR TagMan MicroRNA Assays (Applied
Biosystems 4427975) according to manufacturer instructions. The
miRNA sequences are listed in Supplementary Table 10.
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Cell proliferation assay

MSK543 neurosphere cells grown in NeuroCult NS-A media (Stemcell
Technologies, Vancouver, BC, Canada) supplemented with 20ng/ml
EGF (Peprotech, Rocky Hill, NJ), 10ng/ml bFGF (Peprotech), and
0.0002% Heparin were transfected with 100nM miRIDIAN miRNA
hsa-miR-124, hsa-miR-132, negative control #1, or negative control #2
oligonucleotides (Dharmacon, Lafayette, CO) using the HiPerFect
Transfection Reagent (Qiagen, Valencia, CA) according to manufacturer’s
instructions. Cell-cycle analyses were conducted 48 h post transfec-
tion using the fluorescein isothiocyanate BrdU Flow Kit following
manufacturer’s recommendations (BD Pharmingen, San Diego, CA).

Determination of differentially expressed genes

Differentially expressed genes and targets in all instances were
determined using limma (Diboun et al, 2006). Genes differentially
expressed at 5% FDR were used for further analysis.

Gene ontology analysis

We used the GOstats package (Falcon and Gentleman, 2007) for
performing gene ontology analysis of target gene sets of candidate
regulators and differentially expressed genes in transfection experi-
ments. We used the gene sets from the ‘Biological process’ subset. We
did not consider gene sets which have (i) >1000 genes, or (ii) <10
genes or (iii) have only 1 child with the same gene set.

KDM5A target determination

KDMSA ChIP-seq data in human embryonic stem cells were obtained
from Ram et al (2011). Raw reads were aligned to hgl9 genome
assembly using bowtie (Langmead et al, 2009) and KDMSA binding
regions were determined using MACS for peak calling (Zhang et al,
2008). We then used MEME (Machanick and Bailey, 2011) to determine
binding motif in the top 500 KDMSA binding positions in embryonic
stem cells. This motif was then used to score the gene promoters, and
the top 500 genes were used for analysis.

Data availability

The neurosphere transfection data have been submitted to Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) and can
be accessed using the accession number GSE32876. Gene expression
data of Olig2 + and OPCs can be accessed using the accession number
GSE38591 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token =
nrmfhecakcsomxu&acc =GSE38591). We have also developed an
R package that can be used for both sample and group model
analysis. The package is hosted at http://cbio.mskcc.org/leslielab/
RegulatorInference.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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