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A motivating example: embedding of MD simulation data of aspirin

> local to global in clustering and dimension reduction.
» Clustering: local similarity to find groups.

» Manifold Learning: local neighborhood to find global embedding.



Unsupervised learning for scientific data

v

Understanding structure of data is typical for science.

> Unsupervised learning aims to find structure in data: clusters, low
dimensionality, sparsity, causality, etc.

v

Find knowledge that is non-specific to task or current query.

v

Think as a scientist, answers cannot be crowdsourced:

» |n the least, should be free of artifacts
> ldeally, should have guarantees without untestable model assumptions



Unsupervised learning for scientific data

» Understanding structure of data is typical for science.
> Unsupervised learning aims to find structure in data: clusters, low
dimensionality, sparsity, causality, etc.

» Find knowledge that is non-specific to task or current query.

» Think as a scientist, answers cannot be crowdsourced:

» |n the least, should be free of artifacts
> ldeally, should have guarantees without untestable model assumptions

» THIS TALK
» Data driven methods to make unsupervised learning more reproducible,
trustworthy and free of artifacts

> want stability and interpretability
> through geometry



Geometry Data Analysis (GDA) for unsupervised learning

» Unsupervised learning aims to find structure in data: clusters, low
dimensionality, sparsity, causality, etc

» Convex analysis for clustering.
> Local optimum to guarantee global optimality

v

Differential geometry for Manifold Learning (ML)

> Local metric to preserve geometry
> Local tangent space to find global coordinates with physical meaning

v

(Not dicussed) topological data analysis



Stability guarantees for clustering [M NeurlPS 2018]
provable ‘“correctness” for the practitioner

Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]
“coordinate independent” geometric recovery

Manifold coordinates with physical meaning [M,Koelle,Zhang
arXiv:1811.11891,. . .]
interpretability in the language of the problem



Outline

Stability guarantees for clustering [M NeurlPS 2018]
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For the practitioner of clustering

v

Clustering algorithm e.g. K-means, Spectral clustering produces clustering
C with K clusters

v

IDEALLY WANTED: guarantee that C is correct/optimal

WHAT WE CAN DO: guarantee that C is approximately correct/optimal
WHEN C is good and stable

Good, stable Bad Unstable

\4

v

SS output: Ol=1le™* no guarantee no guarantee
Ol = Optimality Interval



Convex relaxations

Clustering problem Given data, K, loss function Loss(C)

L* = min Loss(C), with solution C*Hard! (1)
CeC,

Convex relaxation of problem (1).
» clustering C — matrix X(C) € X
where X' is convex set
and Loss(X) convex in X

> solve
L* = min Loss(X), with solution X* (2)
Xex



Mapping a clustering to a matrix

n=5C=(1,11,22), X(C) =

O O WIFW[FW|=
O O WIFWIFWI-
O O WIHWIFW|—
NV O O O
NN O O O

1. X(C) is symmetric, positive definite, > 0 elements
2. X(C) has row sums equal to 1
3. trace X(C) = K

Let X be the space n x n of matrices with Properties 1, 2, 3 above

» X(C) are extreme points of X



The Sublevel Set (SS) method

Loss
+
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The Sublevel Set (SS) method

Loss

Loss(C )

a convex optimization problem

v



The Sublevel Set (SS) method

Loss
+

Loss(C ) -

0 is Ol




The Sublevel Set (SS) method

Step 0 Cluster data, obtain a clustering C.
.. Step 1 Define convex optimization problem
k- : (SS) 6 = maxx/ecx || X(C) — X'||F,  s.t. Loss(X') <
Loss(C ) o ok Loss(C).
Step 2 Prove that || X(C) — X(C)'|lF < 6 = dEM(C,C’) < e
E.g. by [M, MLJ 2012]
Done: € is a Optimality Interval (Ol) for C.

Loss
+




Two technical bits

1. SS is convex only if || X" — X(C)|| concave
> Use || ||¢ Frobenius norm. |[X(C)||2 = K for any clustering.



Two technical bits

1. SS is convex only if || X" — X(C)|| concave
> Use || ||¢ Frobenius norm. |[X(C)||2 = K for any clustering.

2. Relating || || to distance between clusterings.

IX(©) -Xx@Y|p<s = dEM(C,C) < e
distance between matrices “misclassification error” metric
between clusterings

v

Theorem proved in [M, Machine Learning Journal, 2012] with € = 26 pmax.-
The tightest result known. Upper/lower bounds between d&M || || and
Rand

v

v

Proofs use geometry of convex sets + refined analysis for small distances
Example from [Wan,M NIPS16] Ol by existing results [] Ol by our method

v



K-means Sublevel Set problem

nxn

Loss(C) = (D,X(C)), D = squared distance matrix € R

SSkm & = min (X(C),X") st.(D,X') < Loss(C)

X'ex

a Semi-Definite Program (SDP).

Algorithm

Input Matrix of squared distances D, clustering C
1. Solve SSkm, get optimal value §.
2. If e = (K — 0)pmax < pmin then C is stable

else no guarantee.



Results for K-means clusterings

K = 4 equal Gaussian clusters, n = 1024, ||ux — /|| = 4v/2 ~ 5.67

data for 0 = 0.9 Values of € vs cluster spread o
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spectral=[M ICMLO06], sop=[M NeurlPS 2018]
Aspirin (CyO4Hg) molecular simulation data [Chmiela et al. 2017]

K=2
Pmin=.26
Pmax=.74

€ = 0.065



Separation statistics

distance to own center over min center  distance to second closest center over
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For what clustering paradigms can we obtain Ol's?

ways to map C to a matrix
space  matrix definition size
X X(C)  Xj=1/nkiffi,j € Cc n X n, block-diagonal
X X Xj = 1iffi,j € Cc  nx n, block-diagonal
Z Z(C) Zw=1/\/nciffi € Gc nx K, orthogonal
Theorem B
[M NeurlPS 2018] If Loss has a convex relaxation involving one of X, X, Z, then

(1) There exists a convex SS problem

SS 6= min (X(C),X') (similarly for X,Z).
X'eX<,

(2) From optimal ¢ an Ol € can be obtained, valid when € < pmin.

X: €= (K - 5)pmax
X : = zke[K] n£+(n;:+.1)2+(K71)726
Z: e=(K— 52/2)Pmax

Existence of guarantee



Results for Spectral Clustering by Normalized Cut

Synthetic S, n = 100

——SDP
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spectrai=[M AISTATSO05], sop=[M NeurlPS 2018]
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Stability and the selection of K [Cheng,M,Harchaoui (in preparation)]

1.0

—— sigma: 0.6[8]
—— sigma: 0.8[8]
—— sigma: 1.0[8]

081 |

sdp bound
o
o

o
IS

0.2

0.0 -7

number of clusters k

Summary of SS method

1.
2.
3.

Cluster data

Set up and solve SS problem

If solution ¢ small enough, guarantee C is approximately optimal
and all other good clusterings are near it

without any model assumptions, practically applicable

not all C can have guarantees



Outline

Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]
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ALL ML Algorithms
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parameter ¢
» Construct neighborhood graph p, p’ neighbors iff ||[p — p/||2 < e
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Brief intro to manifold learning algorithms

ALL ML Algorithms

> Input Data pi, ... ps, embedding dimension m, neighborhood scale
parameter ¢
» Construct neighborhood graph p, p’ neighbors iff ||p — p’||? < €
» Construct a n X n sparse distance matrix
/

D= [||P — P H]P,P/neighbors
» Optional: construct kernel matrix, .e.g
=Llp—p'|?

S =[Spplpprep with S, =e iff p, p’ neighbors

and Laplacian matrix




Embedding in 2 dimensions by different manifold learning algorithms

Original data
(Swiss Roll with hole)

Laplacian Eigenmaps
(LE) Isomap

~ X

D =

Local Tangent Space

Local Linear Embedding Alignment (LTSA)

(LLE)

£
v

A

P

ex



Preserving topology vs. preserving (intrinsic) geometry

» Algorithm maps data p € R® — ¢(p) = x € R™

» Mapping M — ¢(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

» Mapping ¢ preserves

> distances along curves in M
> angles between curves in M
> areas, volumes
...i.e. ¢ is isometry
For most algorithms, in most cases, ¢ is not isometry

Preserves topology Preserves topology + intrinsic geometry
3 = P
2 o = 25“3
5 ==
= =z



Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given
> mapping ¢ that preserves topology

true in many cases

Objective

> augment ¢ with geometric information g
so that (¢, g) preserves the geometry

g is the Riemannian metric.



g for Sculpture Faces

> n =698 gray images of faces in D = 64 x 64 dimensions
> head moves up/down and right/left

LTSA Algoritm



Isomap LTSA

Laplacian Eigenmaps



Relation between g and A

» A = Laplace-Beltrami operator on M
> A = div-grad

2
> on C2, AF =3, %7
J

> on weighted graph with similarity matrix S, and t, = pr/ Spp! s
A = diag{t,} — S

Proposition 1 (Differential geometric fact)

Af = «/det(G)Z% <\/<%(G)Z(G_l)’haikf> ,



Estimation of g

Proposition
Let A be the Laplace-Beltrami operator on M. Then

1 ) )
ha(p) = 580k = (p) (91 = $1(P))ls4p), 0100

where h = g1 (matrix inverse) and k,/ =1,2,... m are embedding
dimensions

Intuition:
> at each point p € M, G(p) is a d x d matrix
> apply A to embedding coordinate functions ¢1,... ¢m
> this produces G~*(p) in the given coordinates
> our algorithm implements matrix version of this operator result

> consistent estimation of A is well studied [Coifman&Lafon 06,Hein&al 07]



Calculating distances in the manifold M

Original Isomap Laplacian Eigenmaps

true distance d = 1.57

Shortest | Metric | Rel.

Embedding | ||f(p) — f(p’)|| | Path d d error
Original data 1.41 1.57 1.62 | 3.0%
Isomap s =2 1.66 1.75 1.63 | 3.7%
LTSAs=2 0.07 0.08 1.65 4.8%
LEs=2 0.08 0.08 1.62 3.1%

dx’ de

) = / ZGU dt dt t,



Riemannian Relaxation for Ethanol molecular configurations

Distortion

H
h ( t .L}

Embedding
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Embedding after RR
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Metric Manifold Learning summary
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Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric G;
along with embedding coordinates
Why useful
» Measures local distortion induced by any embedding algorithm
G; = Iy when no distortion at p;
> Algorithm independent geometry preserving method

» Outputs of different algorithms on the same data are comparable

Applications
» Estimating distortion
» Correcting distortion
> Integrating with the local volume/length units based on G;
> Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
» Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17] and
of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco |)

> Accelerating Topological Data Analysis (in progress), selecting
eigencoordinates [Chen, M NeurlPS19]



Estimate
Riemannian metric
Optimize 1

neighborhood size <:|
[NIPS 2016]

N ',.‘\

7 N
Distances, :

Riemannian relaxation
angles, areas [NIPS 2015]

preserved f= /"
Vector fields
preserved

l’.J F A
Ay = Projr(& - &)

\/ Choose independent e-vectors
* INeurlPS 20191

Coordinates with physical meaning

u]
)
il
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Manifold coordinates with physical meaning [M,Koelle,Zhang
arXiv:1811.11891,. . .]



Motivation

ethanol torsion 1 torsion 2

'8 & 2eod
» 2 rotation angles parametrize this manifold

» Can we discover these features automatically? Can we select these angles
from a larger set of features with physical meaning?



Problem formulation

> Given
> data & €RP,ic1...n
> embedding of data ¢(&1.5) in R™
» dictionary of domain-related smooth functions
F=A{f,...f,, with f : RP = R}.

> e.g. all torsions in ethanol
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Problem formulation

» Given

» data&; €RP,ie€1...n
> embedding of data ¢(&1:) in R™

» dictionary of domain-related smooth functions
F={f,...f,, with f : R — R}.

> e.g. all torsions in ethanol

> Goal to express the embedding coordinate functions ¢1 ... ¢n in terms of
functions in F.
More precisely, we assume that

¢(x) = h(fiy(x),... fi.(x)) with f, _j CF.
Problem: find S = {j1,...Js}



Challenges

¢(x) = h(fjy (x),-.. fi(x)) with £, o CF.

» Framework: sparse regression

\4

Challenges

v

h non-linear (but smooth)
¢ defined up to diffeomorphism

> hence, h cannot assume a parametric form
> will not assume one-to-one correspondence between ¢ coordinates and g;
in dictionary

v

b1 =f/Vh, ¢1 = sin(71)
eg. ¢o="fisin(fZ) or ¢, = cos(r1)(ethanol)
¢3 = sin(m2)



Challenges

¢(x) = h(fjy (x),-.. fi(x)) with £, o CF.

» Framework: sparse regression
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Challenges

v

h non-linear (but smooth)
¢ defined up to diffeomorphism

> hence, h cannot assume a parametric form
> will not assume one-to-one correspondence between ¢ coordinates and g;
in dictionary

v

¢1 = h/VE, ¢1 = sin(71)
eg. ¢o="fisin(fZ) or ¢, = cos(r1)(ethanol)
¢3 = sin(m2)

» we do not assume ¢ isometric

» what requirements on dictionary functions fi., for unique recovery?



First Idea: from non-linear to linear

> If

> (sparse non-linear, non-parametric recovery)

> then

Dé = DhDf

> sparse linear recovery



First Idea: from non-linear to linear

> If

> (sparse non-linear, non-parametric recovery)

> then

D¢ = DhDf

> sparse linear recovery

> A sparse linear system for every data point i
» Require subset S is same for all i

> group Lasso problem
» Functional Lasso

> optimize

31 |7

(FLASSO) m.nJA (B) = 2Z||y, XiBill5+X/vVnY
J

> with y; = V¢(&), Xj = VH,p(8), B = %g(fi)
> support S of 3 selects f; ;. from F



Theory

» When is S unique? / When can M be uniquely parametrized by 77
Functional independence conditions on dictionary F and subset f; ..,

» Basic result

gs = hogs: on U iff

Dgs )
rank = rank Dgsr on U
< DgS’ 8s



Theory

» When is S unique? / When can M be uniquely parametrized by 77
Functional independence conditions on dictionary F and subset f; ..,

» Basic result
gs = hogs: on U iff

Dgs )
rank = rank Dgsr on U
< DgS’ 8s

» When can FLASSO recover S 7
Incoherence conditions
W= max |XJ,TXJ/,| v = %T ndo? = E €%
i=1:n,jES,j' &S minj=1. || X Xis||2

ik

Theorem If py/5 + 2% < 1 then 3; =0 for j & S.



Ethanol MD simulation
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Summary of MANIFOLDLASSO/FUNCTIONALLASSO

Bwiss Roll

> Regress non-linearly functions

(bl:m on F = {ﬂ:p}
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Summary of MANIFOLDLASSO/FUNCTIONALLASSO

X

P e

Swiss Roll

> Regress non-linearly functions
¢1:m on F = {ﬂ:p}
> explain learned coordinates by

dictionaries of domain-relevant
functions

Toluene

eMDA-H-H-Me

> sparse functional regression

rank of feature set, of neural net

. , embedding

§ £ . > set of f’s that covary (e.g. protein
5 < g folding), level sets (in progress)

=
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Dimethylfuran



Summary of MANIFOLDLASSO/FUNCTIONALLASSO

s
Ethanol eMDA-H-H-Me  Toluene Swiss Roll

Malonaldehyde

M-Xylene

Dimethylfuran

Regress non-linearly functions
¢1:m on F = {ﬂ:p}

explain learned coordinates by
dictionaries of domain-relevant
functions

sparse functional regression

rank of feature set, of neural net
embedding

set of f's that covary (e.g. protein
folding), level sets (in progress)

Method to push/pull vectors
through mappings ¢
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Metric Manifold learning

> Before embedding: choice of kernel width € [Perrault-Joncas,McQueen,M
17], choice of intrinsic dimension d

» Simultaneously with embedding: Gaussian process prediction, estimating
vector fields [Perrault-Joncas,M 10], eigenfunctions vs. embedding
coordinates [M,Chen NeurlPS19]

» After embedding: estimate distortion by H and correct it by Riemannian
Relaxation [Perrault-Joncas,M 10, McQueen,Perrault-Joncas,M 16]



Summary: Towards knowledge that is transferable
Cluster validation without model assumptions [M NeurlPS 2018]

> A general method that can be applied to any clustering cost that has a
convex relaxation

Metric Manifold learning

> Before embedding: choice of kernel width € [Perrault-Joncas,McQueen,M
17], choice of intrinsic dimension d

» Simultaneously with embedding: Gaussian process prediction, estimating
vector fields [Perrault-Joncas,M 10], eigenfunctions vs. embedding
coordinates [M,Chen NeurlPS19]

» After embedding: estimate distortion by H and correct it by Riemannian
Relaxation [Perrault-Joncas,M 10, McQueen,Perrault-Joncas,M 16]

Manifold coordinates with pysical meaning [arXiv:1811.11891]
> Interpretation in the language of the domain
» From non-parametric to parametric
Python package github.com/mmp2/megaman
> tractable for millions of points
» manifold learning and clustering

> incorporates state of the art results
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Towards unsupervised validation for unsupervised learning

> In Machine Learning: Unsupervised Learning is the next big challenge

> In the sciences: Unsupervised Learning is about explanation and
understanding

» Automated discoveries require automated validation

> With domain knowledge
> On purely mathematical/statistical grounds

> Remove algorithmic artifacts

» Quantitative measures of “correctness” / robustness / uncertainty
> |s explanation unique?

> Statistical guarantees — without untestable assumptions

» Good community practices — all machine learning algorithms should come
with validation procedures

> Interpretability — in the language of the domain
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