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Motivation: Information Propagation in 2D Grid

How does information spread in time? ←↑↓→ are BSC(δ)

Can we invent relay functions so that far boundary contains non-trivial
information about the original bit?
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Motivation: Information Propagation in 2D Grid
How does information spread in time? ←↑↓→ are BSC(δ)

Can we invent relay functions so that far boundary contains non-trivial
information about the original bit?

Main conjecture:
2 dimensions: For any noise δ > 0 broadcasting impossible
d ≥ 3 dimen.: For δ < δcrit(d) broadcasting possible
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Related Models in the Literature

Communication Networks:
Sender broadcasts single bit through network.

Reliable Computation and Storage:
Broadcasting model is noisy circuit to remember a bit using perfect
gates and faulty wires.
Probabilistic Cellular Automata:
roadcasting on 2D regular grid parallels 1D probabilistic cellular
automata.
Ancestral Data Reconstruction:
Reconstruction on trees ⇔ Infer trait of ancestor from observed
population.
Ferromagnetic Ising Models: [BRZ95, EKPS00]
Reconstruction impossible on tree ⇔ Free boundary Gibbs state of
Ising model on tree is extremal.
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How to assess information decay in networks?

Information percolation:
In Graphical Models

I(Xa;Xb) ≤ perc(a, b)

perc(a, b) = P[∃ open path a→ b]
each edge/vertex open w.p. ηKL

Established in a sequence of papers:
1 [P.-Wu’16]: “Dissipation of information in channels with input constraints”
2 [P.-Wu’17]: “Strong data-processing inequalities for channels and Bayesian

networks”
3 [P.-Wu’18]: “Application of information-percolation method to

reconstruction problems on graphs”

What is ηKL?
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Data processing inequality

PX

QX

X Y

PY

QY

PY |X

For any channel PY |X we always have:

D(QY ‖PY ) ≤ D(QX‖PX)

i.e. channels contract divergence (in fact, any f -divergence)

Equivalently, for any Markov chain U → X → Y we have

I(U ;Y ) ≤ I(U ;X)

In most cases, inequality is strict...
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Strong data-processing inequality (SDPI)

PX

QX

X Y

PY

QY

PY |X

Definition (Two types of SDPI constants)
[Input-free ηKL] Fix channel PY |X then

ηKL(PY |X) , sup
QX ,PX

D(QY ||PY )

D(QX ||PX)

= sup
U→X→Y

I(U ;Y )

I(U ;X)

[Fixed-input ηKL] Fix channel PY |X and input distribution PX then

ηKL(PX , PY |X) , sup
QX

D(QY ||PY )

D(QX ||PX)

= sup
U→X→Y

I(U ;Y )

I(U ;X)

ηKL(PX , PY |X) – related to hypercontractivity
ηKL(PY |X – applications in stats and CS. Information Percolation.
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Next: Special case of broadcasting problem
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Broadcasting on Trees

Fix infinite tree T with branching number br(T ).

Root X0,0 ∼ Bernoulli
(

1
2

)
Edges are independent BSCs with crossover probability δ ∈

(
0, 1

2

)
.

Let P (k)
ML = P

(
X̂k

ML(Xk) 6= X0,0

)
, where

Xk =
(
Xk,0, . . . , Xk,br(T )k−1

)
.

ଶ,଴ ଶ,ଵ ଶ,ଶ ଶ,ଷ

଴,଴

ଵ,଴ ଵ,ଵ

௞,଴ ௞,ଵ ௞,௅ೖିଶ ௞,௅ೖିଵ
level 

level 

level 

level  ଴

ଵ

ଶ
ଶ

௞
௞
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Broadcasting on Trees: Who cares?

To summarize:
Root variable X0,0 is the information
It spreads along a tree of BSC(δ)’s.
Goal: Reconstruct X0,0 from a vector of far-away leaves Xk

If Pe → 1/2 then we say problem is non-reconstructible

This (or similar) question is common:
Coding: analysis of sparse-graph codes
CS: Random constraint satisfaction (e.g. k-SAT)
Stats/ML: Community detection
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Direct proof: density evolution

How would a non-IT guy prove it?
Algorithm: belief propagation from leaves to root
... optimal on trees (!)

Only need to analyze evolution of the (density of) messages. Easy?
Evolution operator T ◦ S: acts on prob. dist. µ on [0,+∞] via:

S(µ) = Law of ln
δeL + δ̄

δ̄eL + δ
, L ∼ µ

T (µ) = Law of L′(L1, L2) , L1, L2
iid∼ µ

and

L′ =

{
L1 + L2, w.p. p(L1, L2) + p(−L1,−L2)

|L1 − L2|, o/w

and p(L1, L2) = (1 + eL1)−1(1 + eL2)−1.

non-reconstruction ⇐⇒ T ◦ S ◦ T ◦ · · · ◦ S(δ∞) ≈ δ0

... pretty tough to work with (unless you are [BRZ95])
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Broadcasting on Trees

Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

If δ < 1
2 −

1

2
√

br(T )
, then reconstruction possible: lim

k→∞
P

(k)
ML <

1
2 .

If δ > 1
2 −

1

2
√

br(T )
, then reconstruction impossible: lim

k→∞
P

(k)
ML = 1

2 .

Proof Idea: Strong data processing inequality [AG76, ES99]

ଶ,଴ ଶ,ଵ ଶ,ଶ ଶ,ଷ

଴,଴

ଵ,଴ ଵ,ଵ

௞,଴ ௞,ଵ ௞,௅ೖିଶ ௞,௅ೖିଵ
level 

level 

level 

level  ଴

ଵ

ଶ
ଶ

௞
௞
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Broadcasting on Trees

Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

If (1− 2δ)2 br(T ) > 1, then reconstruction possible: lim
k→∞

P
(k)
ML <

1
2 .
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k→∞

P
(k)
ML = 1

2 .

Proof Idea: Strong data processing inequality [AG76, ES99]
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ଶ,଴ ଶ,ଵ ଶ,ଶ ଶ,ଷ

଴,଴

ଵ,଴ ଵ,ଵ

௞,଴ ௞,ଵ ௞,௅ೖିଶ ௞,௅ೖିଵ
level 

level 

level 

level  ଴

ଵ

ଶ
ଶ

௞
௞

Yury Polyanskiy Information and inference on trees 11



Broadcasting on trees: lower bound

The IT intuition above is awesome.
Annoyance: lower bound is shown in a very different way!

Kesten-Stigum bound [KS66]: Let

S =
∑
v∈Lk

f(Xv)

where f = second eigenfunction of the noisy channel.
For BSC: f(σ) = σ, σ = ±1.
Analysis: E[S|X0 = ±+ 1] and Var[S] can be computed easily due to
choice of f .
... It shows the X0 = ±1 can be separated if λ2

2 br(T ) > 1.
In other words, KS corresponds to a suboptimal majority-vote decoder.
... and thus results in a suboptimal Pe.
... but surprisingly recovers the right threshold for BSC
(but not in general, e.g. for Potts with q = 5).
Can we analyze the optimal decoder? (without studying T ◦ S)
This is one goal of my talk
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Some background first...

BMS channels
Channel comparison orders: degraded, more capable, less noisy
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BMS channels

Definition
PY |X : {±1} → Y called BMS if there is a bijection h : Y → Y s.t.

PY |X(y|x) = PY |X(h(y)| − x) ∀x, y

For example, BSC, BEC, BI-AWGN, but also...

the X0 → Xk channel!
Let X ∼ Uniform{±1} and define

1 Pe = P[X 6= X̂ML(Y )]
2 C = I(X;Y )
3 Cχ2 = χ2(PY |X=+1‖PY )

Every BMS has a BSC-mixture representation:

Y = (∆,BSC∆(X)) , ∆ ∼ P∆ ⊥⊥ X

The evolution operator T ◦ S described dist. of log 1−∆
∆ .
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Less noisy comparison

Definition
We say PY |X ≤ln PZ|X if for every PU,X we have

=⇒ I(U ;Y ) ≤ I(U ;Z)

The meaning is that PZ|X is a better channel (in the sense above)
Other partial orders exist: PY |X ≤deg PZ|X , PY |X ≤mc PZ|X
(degradation, more capable)
... we won’t need them
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Application of channel comparisons

Consider a system processing X0 into Y1, Y2 as follows
(arrows are noisy channels):

Suppose we replaced X1 → Y1 with a less noisy channel X1 → Z1

Question: Is the channel X0 → (Z1, Y2) less noisy than
X0 → (Y1, Y2)? Yes!

I(U ;Y1, Y2) = I(U ;Y2) + I(U ;Y1|Y2)

≤ I(U ;Y2) + I(U ;Z1|Y2) by def. of ≤ln
= I(U ;Z1, Y2)
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Comparison method for analyzing networks

=⇒

Meta-principle: Given a network, replace channels with less/more
noisy.
If this preserves less noisy relation, then get bounds on I(X0;Y1, Y2)
etc.
This is only useful if we can find simple channels PZ|X

Alas, it is very hard to prove ≤ln relation... Or is it?
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Extremality of BSC and BEC

Theorem (Roozbehani-P.’2019)
1 Among all BMS channels W with fixed Pe the BSC and BEC are

extremal w.r.t. degradation:

BSCPe ≤deg W ≤deg BEC2Pe .

2 Among all BMS channels W with fixed C the BSC and BEC are
extremal w.r.t. more capable:

BSCh−1(1−C) ≤mc W ≤mc BEC1−C .

3 Among all BMS channels W with fixed Cχ2 the BSC and BEC are
extremal w.r.t. less noisy:

BSC1/2−
√
Cχ2
≤ln W ≤ln BEC1−Cχ2 .

Note: We only care about No.3 here, which is new!
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Extremality of BSC and BEC

Theorem (Roozbehani-P.’2019)
1 ... Pe ... degradation ...
2 ... C ... more capable ...
3 Among all BMS channels W with fixed Cχ2 the BSC and BEC are

extremal w.r.t. less noisy:

BSC1/2−
√
Cχ2
≤ln W ≤ln BEC1−Cχ2 .

In [RP19] we used this to analyze new non-linear sparse-graph codes
(LDMCs).
The proof in fact shows a version of Mrs. Gerbers Lemma:
divergence d(p ∗ δ‖q ∗ δ) is convex in Cχ2 = (1− 2δ)2 ∀p, q ∈ [0, 1]

(Usual MGL: q = 1/2 and Cχ2 replaced with C)

We are ready to get rid of Kesten-Stigum
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Theorem (sharp reconstruction lower bound)

Consider b-ary tree. If b(1− 2δ)2 > 1 then lim infd→∞ I(X0;XLd) > 0

Let b = 2 and Wd = the BMS channel from X0 to XLd . Note the
recursive decomposition for Wd+1 in terms of two Wd and BSCδ’s:

B
SC

B
S
C

Suppose (by induction) that Wd ≥ln BSCδd for some δd. Then apply
channel comparison to get:

Wd+1 ≥ln two parallel BSCδd∗δ ≥ln BSCδd+1
,

where δd+1 , J(δd) for some explicit J(x).
Starting from δ0 = 0, analysis shows δ∞ < 1/2. Thus, for all d we
have Wd ≥ln BSCδ∞
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Define two quantities for δ < δcrit(b) = 1
2 −

√
1
4b :

Pe(δ) , lim
d→∞

P[X0 6= X̂0(XLd)]

I(δ) , lim
d→∞

I(X0;XLd)

In physics, behavior of quantities near the phase transition is often
universal, e.g. critical exponents.
So we ask: What are α, β, γ?

Pe(δcrit − τ) = 1/2−Θ(τα)

I(δcrit − τ) = (γ + o(1))τβ

Previously: β = 1, 1/2 ≤ α ≤ 1, some loose bounds on γ.
Our methods (rigorous, except for finite precision arithmetic):

γ ≈ 8
√

2 , 1/2 ≤ α ≤ 0.504
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Next: Reconstruction on sparse graphs
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Reconstructing random colorings

Consider large sparse graph with randomly colored vertices
Local rule: adjacent vertices have distinct colors
Global question: Are there long-range dependencies?

More exactly: Can we predict color of a vertex given colors of its
far-away neighbors?
... if graph is locally tree-like we get a BoT question!
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Reconstructing random colorings: achievability

...
...

...
...

Suppose we have k colors and regular graph of
degree d+ 1.
if d ≥ (1 + o(1))k log k then w.h.p. each node
has among its descendants all colors except its
own.

... then can work backwards and reconstruct
root color with certainty
... i.e. BP message to the root has
zero-entropy.
So when

d ≥ (1 + o(1))k log k

we can reconstruct! Is this tight?
Yes! Two long papers: [Sly ’09],
[Bhatnagar-Vera-Vigoda-Weitz’11]
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Broadcasting on trees: General edge channel

Infinite tree T with marked root ρ.
Reversible Markov kernel W : [k]→ [k] with
invariant distribution q∗.
Each node has a color in [k], where

Root color has distribution q∗.
Color of any non-root node is generated from
color of its parent by applying W .

We say the model has non-reconstruction if

lim
h→∞

I(ρ;Lh) = 0,

where Lh is the set of nodes on level h.

Note: For k-coloring channel
W (y|x) = 1

k−11{y 6= x}

...
...

...
...
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Broadcasting on trees: Result

Theorem (G.-Polyanskiy ’19)
Let br(T ) be the branching number of the tree. Then we have
non-reconstruction if

ηKL(q∗,W ) br(T ) < 1.

If T is a d-regular tree or a Galton-Watson tree with expected
offspring d, then br(T ) = d.
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Broadcasting on trees: Proof for d-regular trees

Apply SDPI to the Markov Chain

Lhi → vi
W−→ ρ,

and get I(ρ;Lhi ) ≤ ηKL(q∗,W )I(vi;L
h
i ).

Use conditional independence.

I(ρ;Lh) ≤
∑
i

I(ρ;Lhi )

≤
∑
i

ηKL(q∗,W )I(vi;L
h
i )

= dηKL(q∗,W )I(ρ;Lh−1).

Apply induction.

ρ

v1

Lh1

v2

Lh2

· · ·

· · ·
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Broadcasting on trees: Comparison

For the coloring channel Wi,j = 1
k−11{i 6= j}, we obtain

non-reconstruction for

d <
log k

log k − log(k − 1)
= (1− o(1))k log k.

... Sharp!

For Potts channels and binary asymmetric channels, we obtain better
numerical values for small d.
Our results are non-asymptotic in k, d, and work for arbitrary trees.
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Application: Community detection

Unsupervised clustering problem
See: 0/1 similarity (i.e. graph)
Want: Are there any clusters?
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Stochastic block model

A Model for community detection: symmetric k-SBM(a, b), a, b > 0

n vertices, each assigned a uniformly random color in [k].
A random graph G with indepedently selected edges

P[(u, v) ∈ E(G)] =

{
a
n , if u, v have same label
b
n , o/w

We say weak recovery is possible for parameters (k, a, b) if there exists
ε > 0 such that, with high probability, given the graph G, we can
construct a partition of the vertex set that is correct for at least εn
vertices.
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Stochastic block model: Result

Theorem (G.-Polyanskiy ’19)

Let d = a+(k−1)b
k , λ = a−b

a+(k−1)b . Weak recovery is impossible if

dηKL(PCλ, q
∗) < 1,

where PCλ is the Potts channel defined by

PCλ(x, y) =
1− λ
k

1{x 6= y}+ (
1

k
+
k − 1

k
λ)1{x = y}.

and q∗ is the uniform distribution.

Proof.
Reduction from broadcasting on trees. �
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Stochastic block model: Comparison

For k ≥ 3, a > b, we improve the state-of-the art [Banks et al. ’16].
Note: for a < b, exact threshold is known [Coja-Oghlan et al. ’19.]
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Conclusion

Machine learning: exciting new local to global problems
... sometimes called combinatorial statistics
Obvious connections with statistical physics

Information theory: excellent tools for these problems
Previously: only on the negative (impossibility) side and “easy”
problems
New: channel comparison, SDPI, info-percolation
... positive results, sharp threshoulds, hard models
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