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• Analytic Combinatorics: (Redundancy Problem of Source Coding)

• Graphs: (Shortest Common Superstring)

• Structure: (Graph Compression)

Algorithms: are at the heart of virtually all computing technologies;

Combinatorics: provides indispensable tools for finding patterns and structures;

Information: measure of distinguishibility.



Objectives of the Workshop

Goals: Principled investigation of the coupling between what may be

termed the ”local information” and more traditional questions about its

global feasibility/complexity/inference. Our quest is for radical new ways of

reasoning about the local-to-global nature of information and computation

Examples. 1. In social networks there is often substantial ”small scale”

structure (e.g., clusters in so-called ego networks), but the global properties

of the adjacency matrix or Laplacian matrix are more consistent with the

hypothesis of unstructured noise.

2. In neural networks training overly-parameterized models against large

quantities of data leads to localized structures in weight matrices that

combine to achieve high quality (but brittle) models.

3. In data science consistency of model classes is very important. To

enable handling rich probabilistic model classes we must study a data-

driven consistency framework. It shifts focus from the global complexity of

the class to a form of local complexity that capture the local variation of

properties within the model classes by means of topological formulations.

4. In problems where one finds an analytic representation through a

complex function, a singular local point determines global asymptotics.
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NSF Center for Science of Information

In 2010 National Science Foundation established

Science and Technology Center for Science of Information
(http: soihub.org)

to advance science and technology through a new quantitative

understanding of the representation, communication and processing of

information in biological, physical, social and engineering systems.

The center is located at Purdue University and partner institutions include:

Berkeley, MIT, Hawaii, Princeton, Stanford, Texas A&M, UIUC, UCSD and Bryn

Mawr & Howard U.

Specific Center’s Goals:

• define core theoretical principles governing transfer of information.

• develop meters and methods for information.

• apply to problems in physical and social sciences, and engineering.

• offer a venue for multi-disciplinary long-term collaborations.

• transfer advances in research to education and industry.



Post-Shannon Challenges

1. Back off from infinity (Ziv’97): Extend Shannon findings to finite size data

structures (i.e., sequences, graphs), that is, develop information theory of

various data structures beyond first-order asymptotics.

Claim: Many interesting information-theoretic phenomena appear in

the second-order terms.

2. Science of Information: Information Theory needs to meet new

challenges of current applications in

biology, communication, knowledge extraction, economics, . . .

to understand new aspects of information in:

structure, time, space, and semantics,

and

dynamic information, limited resources, complexity, representation-invariant

information, and cooperation & dependency.



Value Added and Legacy

Value Added and Legacy:

1. Legacy of new collaboration between different disciplines (biology,

chemistry, computer science, information theory, and statistics)

2. Legacy of new collaboration within the same discipline (e.g., genomic

compression, coded string reconstruction)

3. Legacy of educating new crops of researchers (Courtade, Grover,

Kostina, Oshman, Polyanskiy)

4. Legacy of new research directions (information theory in life sciences,

information theory in data science, community detection, information

theory in discrete geometry)

5. Legacy of formulating new foundations: (security, structure, temporal,

dynamic networks, privacy)
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Source Coding and Redundancy

Source coding aims at finding codes C : A∗ → {0, 1}∗ of the shortest length

L(C, x), either on average or for individual sequences.

Known Source P : The pointwise and maximal redundancy are:

Rn(Cn, P ; xn
1) = L(Cn, x

n
1) + logP (xn

1)

R∗(Cn, P ) = max
xn1

[L(Cn, x
n
1) + logP (xn

1)]

where P (xn
1) is the probability of xn

1 = x1 · · · xn.

Unknown Source P : Following Davisson, the maximal minimax redundancy

R∗
n(S) for a family of sources S is:

R∗
n(S) = min

Cn
sup
P∈S

max
xn1

[L(Cn, x
n
1) + logP (xn

1)].

Shtarkov’s Bound:

dn(S) := log
∑

xn1∈An

sup
P∈S

P (xn
1) ≤ R∗

n(S) ≤ log
∑

xn1∈An

sup
P∈S

P (xn
1)

︸ ︷︷ ︸
Dn(S)

+1



Maximal Minimax for Memoryless Sources

For a memoryless source over the alphabet A = {1, 2, . . . ,m} we have

P (xn
1) = p1

k1 · · · pm
km, k1 + · · · + km = n.

Then

Dn(M0) :=
∑

xn1

sup
P (xn1 )

P (xn
1)

=
∑

xn1

sup
p1,...,pm

p
k1
1 · · · pkm

m

=
∑

k1+···+km=n

( n

k1, . . . , km

)

sup
p1,...,pm

p
k1
1 · · · pkm

m

=
∑

k1+···+km=n

( n

k1, . . . , km

)(k1

n

)k1

· · ·
(
km

n

)km

.

since the (unnormalized) likelihood distribution is

sup
P (xn1 )

P (xn
1) = sup

p1,...,pm

p
k1
1 · · · pkm

m =

(
k1

n

)k1

· · ·
(
km

n

)km



Generating Function for Dn(M0)

We write

Dn(M0) =
∑

k1+···+km=n

( n

k1, . . . , km

)(k1

n

)k1

· · ·
(
km

n

)km

=
n!

nn

∑

k1+···+km=n

k
k1
1

k1!
· · · k

km
m

km!

Let us introduce a tree-generating function

B(z) =
∞∑

k=0

kk

k!
zk =

1

1 − T (z)
, T (z) =

∞∑

k=1

kk−1

k!
zk

where T (z) = zeT (z) (= −W (−z), Lambert’s W -function) that enumerates

all rooted labeled trees. Let now

Dm(z) =
∞∑

n=0

znn
n

n!
Dn(M0).

Then by the convolution formula

Dm(z) = [B(z)]m − 1.



Asymptotics for FINITE m

The function B(z) has an algebraic singularity at z = e−1, and

β(z) = B(z/e) =
1

√
2(1 − z)

+
1

3
+ O(

√

(1 − z).

By Cauchy’s coefficient formula

Dn(M0) =
n!

nn
[z

n
][B(z)]

m
=

√
2πn(1 + O(1/n))

1

2πi

∮
β(z)m

zn+1
dz.

For finite m, the singularity analysis of Flajolet and Odlyzko implies

[zn](1 − z)−α ∼ nα−1

Γ(α) , α /∈ {0,−1,−2, . . .}

that finally yields (cf. Clarke & Barron, 1990, W.S., 1998)

R∗
n(M0) =

m − 1

2
log

(
n

2

)

+ log

( √
π

Γ(m2 )

)

+
Γ(m2 )m

3Γ(m2 − 1
2)

·
√
2

√
n

+

(

3 + m(m − 2)(2m + 1)

36
−

Γ2(m2 )m
2

9Γ2(m2 − 1
2)

)

· 1
n

+ · · ·



Redundancy for LARGE m

Now assume that m is unbounded and may vary with n. Then

Dn,m(M0) =
√
2πn

1

2πi

∮
β(z)m

zn+1
dz =

√
2πn

1

2πi

∮

e
g(z)

dz

where g(z) = m lnβ(z) − (n + 1) ln z.

The saddle point z0 is a solution of g′(z0) = 0, that is,

g(z) = g(z0) +
1

2
(z − z0)

2g′′(z0) + O(g′′′(z0)(z − z0)
3).

Under mild conditions satisfied by our g(z) (e.g., z0 is real and unique), the

saddle point method leads to:

Dn,m(M0) =
eg(z0)

√
2π|g′′(z0)|

×
(

1 + O

(
g′′′(z0)

(g′′(z0))ρ

))

,

for some ρ < 3/2.



Saddle Point

The saddle point z0 satisfies

z0
β′(z0)

β(z0)
=

n + 1

m
.

After some algebra we obtain z0 = (1 − γn,m)eγn,m where

γn,m =
m

2(n + 1)





√

1 +
4(n + 1)

m
− 1





Notice that 0 < z0 < 1. More precisely:

(i) z0 → 1 when m = o(n);
(ii) 0 < z0 < 1 when m = Θ(n);
(iii) z0 → 0 when n = o(m).

m = o(n) m = n n = o(m)



Main Results for LARGE m

Theorem 1 (Orlitsky and Santhanam, 2004, and W.S. and Weinberger, 2010).
(i) For m = o(n)

R∗
n,m(M0) =

m − 1

2
log

n

m
+

m

2
log e +

m log e

3

√
m

n

1

2
− O

(√
m

n

)

(ii) For m = αn + ℓ(n), where α is a positive constant and ℓ(n) = o(n),

R
∗
n,m(M0) = n logBα + ℓ(n) logCα − log

√
Aα + O(ℓ(n)

2
/n)

where Cα := 0.5 + 0.5
√

1 + 4/α, Aα := Cα + 2/α, Bα = αCα+2
α e

− 1
Cα .

(iii) For n = o(m)

R∗
n,m(M0) = n log

m

n
+

3

2

n2

m
log e − 3

2

n

m
log e + O

(

1
√
n

+
n3

m2

)

.



Renewal Sources (Virtual Large Alphabet)

The renewal process R0 (introduced in 1996 by Csiszár and Shields) defined

as follows:

• Let T1, T2 . . . be a sequence of i.i.d. positive-valued random variables

with distribution Q(j) = Pr{Ti = j}.

• In a binary renewal sequence the positions of the 1’s are at the renewal

epochs T0, T0 + T1, . . . with runs of zeros of lengths T1 − 1, T2 − 1, . . . .

For a sequence

xn
0 = 10α110α21 · · · 10αn1 0 · · · 0︸ ︷︷ ︸

k∗

define km as the number of i such that αi = m. Then

P (x
n
1) = [Q(0)]

k0[Q(1)]
k1 · · · [Q(n − 1)]

kn−1Pr{T1 > k
∗}.

Theorem 2 (Flajolet and W.S., 1998). Consider the class of renewal processes.

Then

R∗
n(R0) =

2

log 2

√
cn + O(log n).

where c = π2

6 − 1 ≈ 0.645.



Maximal Minimax Redundancy

It can be proved that rn+1 − 1 ≤ Dn(R0) ≤
∑n

m=0 rm

rn =
n∑

k=0

rn,k, rn,k =
∑

I(n,k)

( k

k0 · · · kn−1

)(k0

k

)k0
(
k1

k

)k1

· · ·
(
kn−1

k

)kn−1

where I(n, k) is is the integer partition of n into k terms, i.e.,

n = k0 + 2k1 + · · · + nkn−1, k = k0 + · · · + kn−1.

But we shall study sn =
∑n

k=0 sn,k where

sn,k = e
−k
∑

I(n,k)

kk0

k0!
· · · k

kn−1

kn−1!

since S(z, u) =
∑

k,n sn,ku
kzn =

∏∞
i=1 β(z

iu).

sn = [zn]S(z, 1) = [zn] exp
(

c
1−z + a log 1

1−z

)

Theorem 3 (Flajolet and W.S., 1998). We have the following asymptotics

sn ∼ exp

(

2
√
cn − 7

8
log n + O(1)

)

, log rn =
2

log 2

√
cn−5

8
logn+

1

2
log logn+O(1).
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Shortest Common Superstring

Problem Formulation:

given a set of strings X1, X2, . . . , Xn over an alphabet A, find the shortest

string Z such that each Xi appears as a substring of Z.

Example: Consider X1 = abaaab, X2 = aabaaaa, X3 = aababb.

X1 = a b a a a b

X2 = a a b a a a a

X3 = a a b a b b

Z = a b a a a b a a a a b a b b

Observe that
∑

i |Xi| = 19 and |Z| = 14, hence the overlap O3 = 5.

Optimal Overlap Oopt
n :

Let S be a set of all superstrings built over the strings X1, . . . , Xn. Then,

Oopt
n =

n∑

i=1

|Xi| − min
Z∈S

|Z|

is the optimal overlap in the shortest common superstring.

Finding SCS is NP-hard.



Greedy Algorithm: On Average

Example:

Let us consider the following five strings: X1 = abaaab, X2 = aabaaaa,

X3 = aababb, X4 = bbaaba, and X5 = bbbb.

Let now G be a weighted digraph built on the set of strings {X1, . . . , X5}
with weights defined as the length of the largest suffix equal to a prefix of

another string.

Observe that the optimal (maximum) Hamiltonian path in G determines

the maximum overlap between strings X1, . . . , X5. Hence, Z =
abaaababbbbaabaaaa and Oopt

5 = 3 + 2 + 2 + 4 = 11.

2

1

3

5
4

3

2

1

3

1

4
2

4 2

3
1

2

Figure 1: The digraph G. Optimal Hamiltonian path (starting at node 4 is

shown in bold.



Greedy Algorithm is Asymptotically Optimal!

Theorem 4 (Alexander, 1996; Frieze and Szpankowski, 1998). Consider a

memoryless sources that generates n independent strings over the alphabet

A = {1, . . . ,m}. Then

lim
n→∞

Oopt
n

n logn
=

1

h
, (pr.) lim

n→∞

Ogr
n

n log n
=

1

h

provided the length ℓ of all strings is greater than 4
h1

log n where h1 =

− ln(p2
1+ · · ·+p2

m) is the first order Rényi’s entropy and pi = Pr{Xk(t) = j}.

Sketch of a proof. Let Cj be the longest suffix of X1 equal to a prefix of Xj.

For Oopt
n = maxj Cj we have

P (max
j

Cj > t) ≤ nP (Cj > t) = n(p
2
1 + · · · + p

2
m)

t
.

This would suggest that whp

O
opt
n ≤ 2

log(p2
1 + · · · + p2

m)−1
log n.

But it is NOT. The correct answer is whp

max
j

Cj =
1

h
logn

where h is the entropy h = −
∑

i pi log pi.
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Structure

Structure:

Measures are needed for quantifying

information embodied in structures

(e.g., material structures, nanostructures,

biomolecules, gene regulatory networks

protein interaction networks, social networks,

financial transactions).

Information Content of Unlabeled Graphs:

A random structure model S of a graph G is defined for an unlabeled

version. Some labeled graphs have the same structure.

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

G1 G2 G3 G4

G5 G6 G7 G8

S1 S2

S3 S4

HG = E[− logP (G)] = −
∑

G∈G
P (G) logP (G),

HS = E[− logP (S)] = −
∑

S∈S
P (S) logP (S).



Automorphism and Erdös-Rényi Graph Model

Graph Automorphism:

For a graph G its automorphism

is adjacency preserving permutation

of vertices of G.

a

b c

d e

Erdös and Rényi model: G(n, p) generates graphs with n vertices, where

edges are chosen independently with probability p. If G has k edges, then

P (G) = pk(1 − p)(
n
2)−k.

Theorem 5 (Y. Choi and W.S., 2008). For large n and all p satisfying lnn
n ≪ p

and 1 − p ≫ lnn
n (i.e., the graph is connected w.h.p.),

HS =
(n

2

)

h(p)−logn!+o(1) =
(n

2

)

h(p)−n log n+n log e−1

2
log n+O(1),

where h(p) = −p log p − (1 − p) log (1 − p) is the entropy rate.

AEP for structures: 2−(n2)(h(p)+ε)+log n! ≤ P (S) ≤ 2−(n2)(h(p)−ε)+log n!.

Sketch of Proof: 1. HS = HG − logn! +
∑

S∈S P (S) log |Aut(S)|.
2.
∑

S∈S P (S) log |Aut(S)| = o(1) by asymmetry of G(n, p).



Structural Zip (SZIP) Algorithm



Asymptotic Optimality of SZIP

Theorem 6 (Choi, W.S., 2008). Let L(S) be the length of the code.

(i) For large n,

E[L(S)] ≤
(n

2

)

h(p) − n logn + n (c + Φ(logn)) + o(n),

where h(p) = −p log p − (1 − p) log (1 − p), c is an explicitly computable

constant, and Φ(x) is a fluctuating function with a small amplitude or zero.

(ii) Furthermore, for any ε > 0,

P (L(S) − E[L(S)] ≤ εn logn) ≥ 1 − o(1).

(iii) The algorithm runs in O(n + e) on average, where e # edges.

Table 1: The length of encodings (in bits)
Networks # of # of our adjacency adjacency arithmetic

nodes edges algorithm matrix list coding

R
e

a
l-
w

o
rl
d

US Airports 332 2,126 8,118 54,946 38,268 12,991
Protein interaction (Yeast) 2,361 6,646 46,912 2,785,980 1 59,504 67,488

Collaboration (Geometry) 6,167 21,535 115,365 19,012, 861 55 9,910 241,811
Collaboration (Erdös) 6,935 11,857 62,617 24,043,645 308,2 82 147,377

Genetic interaction (Human) 8,605 26,066 221,199 37,0 18,710 729,848 310,569
Internet (AS level) 25,881 52,407 301,148 334,900,140 1,572, 210 396,060



That’s IT


