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General framework

Let P be a collection of probability distributions on some
measurable space. Throughout this talk we will take this
space to be the integers N with the usual σ-field.

We observe X1,X2, . . . drawn i.i.d. with distribution p ∈ P.
However, we do not know which p is in effect.

At some time we make a decision (decide some predicate is
satisfied). We may be wrong with some nonzero probability.

Satisfying the predicate may also involve active participation
of the observer, e.g. using some algorithm .



Outline Insurance Compression Learning

Strong, weak and data-derived weak

If the time at which we decide that the predicate holds is
uniform over all p ∈ P, the class P is strongly amenable to
the predicate.

If, for every p ∈ P, there is a time at which the predicate is
satisfied, the class P is weakly amenable to the predicate.

We propose a novel notion of what it means for the class P to
be data-derived weakly amenable to the predicate. Basically,
the time at which we decide the predicate holds should be
based on the observed data.

More generally, these notions are applied to scenarios where
there are multiple predicates.
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Motivating context

Insurer

The loss distribution is assumed to be a
member of a class P but otherwise not
known to the insurer. We assume i.i.d.
losses over time.

The premium setting strategy should work
universally over loss distributions in this
class

The insurer can observe losses for a while
before deciding to write a contract.

We ask: which classes P are insurable?
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Insurability as tail domination

A tail domination strategy is a sequence of functions
Φ := (Φn, n ≥ 0), where Φn : Rn → R+.

Intuitively, the aim is to make sure that for all n, after an
initial observation period, we will have, with only a small
probability of error,

Φn(X1, . . . ,Xn) > Xn+1.

Insurability is basically equivalent to tail domination, except
that the insurer needs to adjust its premiums to correct for
the built up excess from past premiums after claims have been
paid out.
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Strong insurability of P

P is called strongly insurable if, for every η > 0, there exists a
tail domination strategy Φη := (Φη

n.n ≥ 0) and a time
n0(η,Φη) such that, for all p ∈ P, we have

Pp( there exists n ≥ n0(η,Φη) such that Φη
n(X1, . . . ,Xn) ≤ Xn+1) < η.
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Characterizing strong insurability

P is called tight if, for every ε > 0, there is some K ε <∞
such that

p(X > K ε) < ε for all p ∈ P.

Tightness implies strong insurability.

Tightness is not necessary for strong insurability.
Example: Let P be the collection of uniform distributions on
{1, . . . , 2N} for N ≥ 1, call these uN .

PuN ( max
1≤i≤n

Xi ≤ N) = (
1

2
)n.

Observe n := dlog2
1
η e samples, then set the tail dominator to

2 max1≤i≤n Xi + 1.
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Weak insurability of P

P is called weakly insurable if, for every η > 0, there exists a
tail domination strategy Φη := (Φη

n.n ≥ 0) such that, for every
p ∈ P, there exists a time n0(η,Φη, p) such that

Pp( there exists n ≥ n0(η,Φη, p) such that Φη
n(X1, . . . ,Xn) ≤ Xn+1) < η.
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Characterizing weak insurability

Recent results of Chonglong Wu and Narayana Santhanam
indicate that if P is a countable union of tight classes then P
is weakly insurable.
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Data-derived weak insurability of P

Let N∗ denote the set of all finite strings of integers (including
the empty string).

A stopping rule is a map τ : N∗ → {0, 1} such that
(i) If τ(x) = 1 and x is a prefix of y then τ(y) = 1.
(ii) Pp(τ(X n) is eventually equal to 1) = 1 for all p ∈ P.

P is called data-derived weak insurable if, for every η > 0,
there is a tail domination strategy Φη := (Φη

n, n ≥ 0) and
stopping rule τη such that

Pp(Φη
n(X1, . . . ,Xn) ≤ Xn+1 for some n such that τη(X1, . . . ,Xn) = 1) < η.
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Characterizing data-derived weak insurability.

A probability distribution p ∈ P is called deceptive for tails if
the intersection of every open l1-neighborhood of p with P is
not tight .

supall q ∈ P in the neighborhood of p ∈ P
1− δ percentile of q bounded?

Above statement true for all δ?

Theorem: P is data-derived weak insurable iff each p ∈ P is
not deceptive for tails.

Narayana Santhanam and VA, “Agnostic insurability of model

classes”, JMLR, pp. 2329 -2355, 2015.
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Technical ingredients in the proof

Let

J(p, q) := D(p‖p + q

2
) + D(q‖p + q

2
) .

where

D(p‖q) :=
∑
i

p(i) log
p(i)

q(i)
.

For any two probability distributions p and q on N, we have

1

4 ln 2
|p − q|21 ≤ J(p, q) ≤ 1

ln 2
|p − q|1 .

For any three probability distributions p, q, r ∈ N we have

J(p, q) + J(q, r) ≥ ln 2

8
J(p, r)2 .
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Sketch of proof of sufficiency

Each p ∈ P has an open l1-neighborhood of positive radius
εp, called its reach such that, for all percentiles 1− δ, there is
a universal upper bound on the 1− δ percentile of all q ∈ P
lying in the reach of p.

Since l1 is a separable metric space, it is Lindelöf, so one can
cover P by a countable union of reaches, enumerated in some
way.

When p ∈ P is in effect, the insurer computes the type
(empirical distribution) of the observed losses as time
progresses. This will eventually enter the union of this
countable collection of reaches.

The decision that needs to be made is whether to allow
oneself to be trapped by a reach.
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Good traps

Types captured by p′ will not harm p if p is within the reach of p′.
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Bad traps

p generates types captured by hostile p′ —but such types have low
probability
Putting these together gives a constructive proof for the sufficiency
condition
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Examples

If P is:

The set of all finite support distributions, then it is not
insurable

The set of all uniform distributions, then it is insurable

The set of all monotone distributions (with finite entropy),
then it is not insurable

The set of all distributions with a uniformly bounded mean,
then it is insurable

The set of all distributions with a finite mean, then it is not
insurable
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Strong, weak and data-derived compressibility

We restrict attention to classes of probability distributions P
on N comprised of probability distributions with finite entropy.

We introduce a novel notion of data-derived weak
compressiblity .
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Strong compressibility of P

P (comprised of probability distributions with finite entropy)
is called strongly compressible if there exists a probability
measure q on NN such that

lim sup
n→∞

sup
p∈P

1

n
Ep log

p(X n)

q(X n)
= 0 .

Equivalently, for all ε > 0 and all η > 0, there exists a
probability measure qε,η on NN and n0(ε, η, qε,η) such that, for
all n ≥ n0(ε, η, qε,η) and all p ∈ P, we have

Pp(
∑
xn∈Nn

p(xn) log
p(xn)

q(xn)
≥ ε for some n ≥ n0(ε, η, qε,η)) < η

The introduction of η here is meaningless, but is done for
future reference

The equivalence of a single q to multiple qε,η comes from

considering
∑

k≥1,l≥1
1

k(k+1)l(l+1)q
1

2k
, 1

2l .
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Weak compressibility of P

P (comprised of probability distributions with finite entropy)
is called weakly compressible if there exists a probability
measure q on NN such that, for each p ∈ P, we have

lim sup
n→∞

1

n
Ep log

p(X n)

q(X n)
= 0 .

Equivalently, for all ε > 0 and all η > 0, there exists a
probability measure qε,η on NN such that, for all p ∈ P, there
exists n0(ε, η, qε,η, p) such that, for all n ≥ n0(ε, η, qε,η, p), we
have

Pp(
∑
xn∈Nn

p(xn) log
p(xn)

q(xn)
≥ ε for some n ≥ n0(ε, η, qε,η, p)) < η.

The introduction of η here is meaningless.
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Data-derived weak compressibility of P

Let N∗ denote the set of all finite strings of integers (including
the empty string).

A stopping rule is a map τ : N∗ → {0, 1} such that
(i) If τ(x) = 1 and x is a prefix of y then τ(y) = 1.
(ii) Pp(τ(X n) is eventually equal to 1) = 1 for all p ∈ P.

P (comprised of probability distributions with finite entropy)
is called data-derived weakly compressible if for all ε > 0 and
all η > 0, there exists a probability measure qε,η on NN and a
stopping rule τ ε,η,q

ε,η
such that, for all p ∈ P, we have

Pp(
∑
xn∈Nn

p(xn) log
p(xn)

q(xn)
≥ ε for n s.t. τ ε,η,q

ε,η

(X1, . . . ,Xn) = 1) < η.



Outline Insurance Compression Learning

Characterizing data-derived weak compressibility

p ∈ P is called deceptive for compression if, for all probability
measures q on NN, we have

lim
ε→0

lim sup
n→∞

sup
p′∈B(p,ε)

1

n
Ep′ log

p′(X n)

q(X n)
> 0 ,

where B(p, ε) denotes the intersection open l1-ball of radius ε
around p with P.

Here P is assumed to be comprised of probability distributions
on N with finite entropy.

Theorem*: (with Narayana Santhanam, Wojtek Szpankowski
and Aleksandr Kavcic)
P is data-derived weakly compressible iff no p ∈ P is
deceptive for compression.

Waiting (for five years already and still counting) for Narayana
Santhanam to write the journal paper.
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Proofs

For the sufficiency proof, assume that each p ∈ P is not
deceptive for compression.

Then, for each p ∈ P, there is some probability measure qp on
NN such that, for all δ > 0, there is some εp,δ > 0 and n0(p, δ)
such that, for all n ≥ n0(p, δ) and all p′ ∈ B(p, εp,δ), we have

1

n
Ep′ log

p′(X n)

qp(X n)
< δ.

What this means is that treating qp as the compression
measure for all p′ ∈ B(p, εp,δ) is good enough to get
compression redundancy less than δ.

Hence, for a given δ > 0 we define εp,δ as above to now be
the reach of p ∈ P.

The proof is then somewhat different from, but of the same
flavor as, the proof of sufficiency for the insurability theorem.
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Examples

If P is:

The set of all uniform distributions, then it is d.w.c. but it is
not strongly compressible.

The set of all distributions with a finite mean, then it is
weakly compressible but it is not d.w.c..

The set of all monotone distributions with finite entropy, then
it is weakly compressible but it is not d.w.c..

The set of all monotone distributions with finite entropy, and
with the uniformly bounded second moment of the self
information, i.e. Ep[(log 1

p(X ) )2] ≤ h <∞, then then it is
strongly compressible.
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Rademacher complexity

Let A ⊆ Rn.

Let ε1, . . . , εn be i.i.d. uniform {±1}-valued random variables.

Eε[supa∈A
∑n

i=1 εiai ] is called the Rademacher complexity of
the set A.

Note that supa∈A
∑n

i=1 εiai is sub-Gaussian with parameter
4
∑n

i=1 supa∈A a2
i .
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Glivenko-Cantelli class of functions

Let F be a countable collection of [0, 1]-valued functions on a
standard measurable space (X,X ).

Let p be a probability distribution on (X,X ).

If X1, . . . ,Xn are i.i.d. with law p, we write pn for their
empirical distribution.
(Note that pn is a random variable.)

‖pn − p‖F denotes supf ∈F | 1n
∑n

i=1 f (Xi )− Ep[f (X )]|. This is
sub-Gaussian with parameter 1

n .

If ‖pn − p‖F
P→ 0 as n→∞ we say that p verifies a uniform

law of large numbers (uniformity is over F , but p is fixed).
and F is then called a weak Glivenko-Cantelli class of
functions for p.

If ‖pn − p‖F
a.s.→ 0 as n→∞ then F is then called a strong

Glivenko-Cantelli class of functions for p.
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Rademacher complexity of F with respect to p

Let F be a countable collection of [0, 1]-valued functions on
(X,X ), and p be a probability distribution on (X,X ).

Let ε1, . . . , εn be i.i.d. uniform {±1}-valued random variables.

If X1, . . . ,Xn are i.i.d. with law p, consider
{(f (X1), . . . , f (Xn))T ∈ Rn}, and let

Radn(F , p) := Ep[Eε[sup
f ∈F

1

n

n∑
i=1

εi f (Xi )]]

(Note the normalization by 1
n .)
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Rademacher complexity and Glivenko Cantelli classes

1

2
Radn(F , p)−

√
log 2

2n
≤ Ep‖pn − p‖F ≤ 2Radn(F , p)

Since ‖pn − p‖F is sub-Gaussian with parameter 1
n , we have,

for all δ > 0,

Ep‖pn − p‖F − δ ≤ ‖pn − p‖F ≤ Ep‖pn − p‖F + δ,

with probability at least 1− 2 exp(−2δ2n).

Hence F is a strong Glivenko Cantelli class for p iff
Radn(F , p)→ 0 as n→∞.

Also, since ‖pn − p‖F ≤ 2 under our assumptions, if

‖pn − p‖F
P→ 0 as n→∞, we have Radn(F , p)→ 0 as

n→∞. Thus we will not need to distinguish between weak
and strong Glivenko-Cantelli classes under our assumptions.
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Uniform Glivenko-Cantelli class of functions

Let F be a countable collection of [0, 1]-valued functions on
(X,X ).

F is called a uniform Glivenko-Cantelli class of functions if,
for all ε > 0, we have

sup
p

Pp(‖pn − p‖F ≥ ε)→ 0

as n→∞
Equivalently, for all ε > 0 and η > 0, there is n0(ε, η) such
that, for all p, we have

Pp(‖pn − p‖F ≥ ε) < η, for all n ≥ n0(ε, η).

Notice the strong sense in which the predicate is satisfied.
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Universal Glivenko-Cantelli class of functions

Let F be a countable collection of [0, 1]-valued functions on
N.

F is called a universal Glivenko-Cantelli class of functions if it
is a Glivenko-Cantelli class for each probability distribution p
on N.

Equivalently, for all ε > 0 and η > 0, and all p, there is
n0(ε, η, p) such that

Pp(‖pn − p‖F ≥ ε) < η for all n ≥ n0(ε, η, p).

Notice the weak sense in which the predicate is satisfied.
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P admitting F as a Glivenko-Cantelli class in the strong
sense

Let P be a collection of probability distributions on (X,X ).

Let F be a countable collection of [0, 1]-valued functions on
(X,X ).

We say that P admits F as a Glivenko-Cantelli class in the
strong sense if, for all ε > 0, we have

sup
p∈P

Pp(‖pn − p‖F ≥ ε)→ 0

as n→∞
Equivalently, for all ε > 0 and η > 0, there is n0(ε, η) such
that, for all p ∈ P, we have

Pp(‖pn − p‖F ≥ ε) < η for all n ≥ n0(ε, η).
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Characterizing P that admit F as a Glivenko-Cantelli class
in the strong sense

P admits F as a Glivenko-Cantelli class in the strong sense iff

sup
p∈P

Radn(F , p)→ 0

as n→∞.
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P admitting F as a Glivenko-Cantelli class in the weak
sense

Let P be a collection of probability distributions on (X,X ).

Let F be a countable collection of [0, 1]-valued functions on
(X,X ).

We say that P admits F as a Glivenko-Cantelli class in the
weak sense if F is a Glivenko-Cantelli class for each p ∈ P.

Equivalently, for all ε > 0 and η > 0, and all p ∈ P, there is
n0(ε, η, p) such that

Pp(‖pn − p‖F ≥ ε) < η for all n ≥ n0(ε, η, p).
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Characterizing P that admit F as a Glivenko-Cantelli class
in the weak sense

P admits F as a Glivenko-Cantelli class in the weak sense iff,
for all p ∈ P, we have

Radn(F , p)→ 0

as n→∞.
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P admitting F as a Glivenko-Cantelli class in the
data-derived weak sense

Let X∗ denote the set of all finite strings of elements from X
(including the empty string).

A stopping rule is a map τ : X∗ → {0, 1} such that
(i) If τ(x̄) = 1 and x̄ is a prefix of ȳ then τ(ȳ) = 1.
(ii) Pp(τ(X n) is eventually equal to 1) = 1 for all p ∈ P.

We say that P admits F as a Glivenko-Cantelli class in the
data-derived weak sense if, for all δ > 0 and η > 0,there is a
stopping time τ δ,η such that, for all p ∈ P, we have

Pp(Pp(‖pn−p‖F ) < δ for all n such that τ δ,η(X1, . . . ,Xn) = 1) ≥ 1−η.

If the collection of all probability distributions on (X,X )
admits F as a Glivenko-Cantelli class in the data-derived weak
sense, we say that F is a Glivenko-Cantelli class in the
data-derived weak sense.
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Characterizing P that admit F as a Glivenko-Cantelli class
in the data-derived weak sense

p ∈ P is called deceptive for F if we have

lim
δ→0

lim sup
n→∞

sup
q∈B(p,δ)

Radn(F , q) > 0.

Theorem *

P admits F as a Glivenko-Cantelli class in the data-derived weak sense iff
no p ∈ P is deceptive for F .
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Proofs

For the sufficiency proof, assume that each p ∈ P is not
deceptive for F .

Then, for each p ∈ P, for every δ > 0 there is some εp,δ > 0
and n0(p, δ) such that, for all n ≥ n0(p, δ) and all
q ∈ B(p, εp,δ), we have

Radn(F , q) < δ.

What this means is that the empirical distribution of the
observations will be within δ of the driving distribution,
uniformly over F , as long as the driving distribution is within
the reach of p.

Hence, for a given δ > 0 we define εp,δ as above to now be
the reach of p ∈ P.

The proof is then somewhat different from, but of the same
flavor as, the proof of sufficiency for the insurability theorem.
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Pseudometric

Let F be a countable collection of [0, 1]-valued functions on
(X,X ).

For 1 ≤ r <∞ and fixed x1, . . . , xn ∈ X, one can define a
pseudometric on F by

dr ,xn(f , g) :=

(
1

n

n∑
i=1

|f (xi )− g(xi )|r
) 1

r

,

and one can define

d∞,xn(f , g) := max
1≤i≤n

|f (xi )− g(xi )|.

Here f , g ∈ F .
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Metric entropy

Given α > 0, let N (α,F , d) denote the α-covering number of
F for any pseudometric d on F , i.e. the smallest cardinality
of a collection of α-balls in the pseudometric d that cover F .

The function α→ logN (α,F , d) is called the metric entropy
function of F under the pseudometric d .

Let p be a probability distribution on (X,X ). Then we have

Cdown

log n
sup

0<α<∞

(
αEp

√
logN (α,F , d2,X n)

n

)
≤ Radn(F , p)

≤ CupEp

∫ ∞
0

√
logN (α,F , d2,X n)

n
dα.

The lower bound is called Sudakov’s bound and the upper
bound is called Dudley’s entropy integral bound.
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Uniform Glivenko-Cantelli classes and metric entropy

Let F be a countable collection of [0, 1]-valued functions on
(X,X ).

Theorem

F is a uniform Glivenko-Cantelli class iff for some (and equivalently for
all) 1 ≤ r ≤ ∞ it holds for all α > 0 that

lim
n→∞

1

n
sup
xn∈Nn

logN (α,F , dr ,xn) = 0.

R. M. Dudley, E. Giné and J. Zinn. “Uniform and universal Glivenko-Cantelli classes”,

1991.

Let us specialize this result to N with its usual σ-field.
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Universal Glivenko-Cantelli classes and metric entropy

Let F be a countable collection of [0, 1]-valued functions on
(X,X ).

Let dl1(p) denote the pseudometric on F given by∑
x∈N |f (x)− g(x)|p(x), where f , g ∈ F .

Theorem

F is a universal Glivenko-Cantelli class iff we have, for every α > 0 and
every probability distribution p on N, that

N (α,F , dl1(p)) <∞.

Ramon van Handel. “The universal Glivenko-Cantelli property”, 2013.

If we specialize this result to N with its usual σ-field, we see
that every countable collection F of [0, 1]-valued functions on
N is universal Glivenko-Cantelli.
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Three questions

F a countable collection of [0, 1]-valued functions on N.

Question 1

What is a metric entropy characterization of when F is a
Glivenko-Cantelli class in the data-derived weak sense?

Let P be a collection of probability distributions on N.

Question 2

What is a metric entropy characterization of when P admits F as a
Glivenko-Cantelli class in the strong sense?

Question 3

What is a metric entropy characterization of when P admits F as a
Glivenko-Cantelli class in the data-derived weak sense?
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Combinatorial characterization of uniform Glivenko-Cantelli
classes

Let F be a countable collection of [0, 1]-valued functions on
(X,X ) (but specialize to N for our purposes).

Let A ⊆ X be a finite subset, and let γ > 0. We say that F
shatters A at scale γ if there are real numbers s(x), x ∈ A
such that, for every subset B ⊂ A there is a function f ∈ F
such that f (x) ≥ s(x) + γ for x ∈ B and f (x) ≤ s(x)− γ for
x ∈ A− B.

The γ-fat shattering dimension of F is the supremum over
cardinalities of finite sets that are shattered by F at scale γ.

Theorem

F is a uniform Glivenko-Cantelli class iff its γ-fat shattering dimension is
finite for all γ > 0.

N. Alon, S. Ben-David, N. Cesa-Bianchi and D. Haussler.

“Scale-sensitive dimensions, uniform covergence and learnability”, 1997.
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Special case: Shattering by sets

Let C be a countable collection of subsets of (X,X ) (but
specialize to N for our purposes).
Note that we can interpret C as a special case of F comprised
of {0, 1}-valued as opposed to [0, 1]-valued functions.

A finite set A ⊆ X is said to be shattered by C if for every
B ⊆ A there is a set C ∈ C such that C ∩ A = B.

The Vapnik-Chervonenkis dimension of C is the supremum of
the cardinalities of finite subsets of X that are shattered by C.

Theorem

C is a uniform Glivenko-Cantelli class iff its VC dimension is finite.

Vapnik and Chervonenkis, 1971; Assouad and Dudley, 1989; Dudley, Giné and Zinn,

1991.
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Three more questions

Let F be a countable collection of [0, 1]-valued functions on
N (in particular, consider C).

Question 4

What is a combinatorial characterization of when F is a Glivenko-Cantelli
class in the data-derived weak sense?

Let P be a collection of probability distributions on N.

Question 5

What is a combinatorial characterization of when P admits F as a
Glivenko-Cantelli class in the strong sense?

Question 6

What is a combinatorial characterization of when P admits F as a
Glivenko-Cantelli class in the data-derived weak sense?
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The End

Thank you!
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