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Introduction

Theme: A different kind of statistical guarantee

Meta-question 1: Expanding uniform consistency to finitely many
errors

Meta-question 2: If finitely many errors, stopping rule that
anticipates the last error
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Results

Characterization of

(i) model classes that admit predictors with finitely many errors,
and
(ii) when there is a stopping rule that anticipates (with any given
confidence) the point at which the last error is made

The first is a story of regularization (i.e. breaking the model class
into smaller simpler classes appropriate for the amount of data on
hand) and the second that of identifiability of the subclasses in the
regularization
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Cover (1973): is the bias of a coin rational?

Coin tosses: X1,X2, . . . ∼ p
After each toss: decide if p rational or not?
Finitely many errors?

Seem impossible when rationals are dense in the real line, but in
fact, there is a scheme that makes only finitely many errors!

(for all rational, all irrationals except a Lebesgue measure 0 set)

In anticipation of our results, we will take a regularization view
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Regularization

Let r1, r2, . . . be an enumeration of rational numbers in [0, 1]

Build set Sn as follows:

0 1

Note S1 ⊂ S2 ⊂ ...
In Sn, total measure removed ≤ 1

n . If

S =
⋃
n

Sn,

S has measure 1 and contains every rational.
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Prediction in each subclass Sn

In each Sn: rational vs irrational with confidence 1− 2−n?

Every rational in Sn is at least 1
n2n away from an irrational

For any confidence, in particular 1− 2−n, there exists sample
size bn large enough that we can decide rationality of sources in Sn
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Prediction for S

What about S?

Break into phases
n′th phase: bn ≤ sample size < bn+1, use estimaxtor for Sn

Every rational in S will eventually show up in Sm for some finite
m, after which, the probability of error is 1/2m in any phase

error only in finite number of phases (Borel-Cantelli)

For any irrational in S, error in each phase m is 1/2m,
again error only in finite number of phases (Borel-Cantelli)

Therefore, no matter what the source, only finite number of errors!
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Regularization is also necessary!

We show the converse also holds: if any S admits a finite-error
rationality estimator with only finite number of errors, then

S =
⋃
n

Sn

where S1 ⊂ S2 ⊂ · · · and each Sn satisfies

inf{|r − x | : r , x ∈ Sn and r is rational, x is irrational} > 0

(Wu-Santhanam, arxiv)

Namely, each Sn can be handled with arbitrary confidence with a
finite sample size

If S admits a finite-error rationality predictor, then we can
always find a regularization to tackle it
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Rank Estimation

Let X be a d × d random matrix with entries Xi ,j to be
independent Bernoulli random variables. Denote pi ,j = E[Xi ,j ] and
E[X ] be the matrix with entries pi ,j .

X1, · · · ,Xn are i.i.d. samples of X, which are d × d binary
matrices.

How could we reasonably estimate Rank(E[X]) by observing
X1, · · · ,Xn?
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Rank Estimation

A naive way is to compute

X̄n =
1

n

n∑
k=1

Xk ,

and use Rank(X̄n) as an estimation of Rank(E[X]).

However, such an estimation is not reasonable since X̄n is full rank
w.h.p. even for matrices E[X] with same entries.
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Rank Estimation

It seems one can’t estimate the rank at all, since arbitrary small
perturbation on E[X] will significantly change the rank.

We show that there exist an estimator Φ such that

Φ(X1, · · · ,Xn)→ Rank[X] w.p. 1

as n→∞.
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eas-predictable

P: class of models over support N
X1,X2, · · · ∼ p ∈ P

At step n: learner outputs Y (X1, . . . ,Xn) and is scored with a
binary loss

` : P × X × Y → {0, 1}

(Property we predict implictly defined by the set ` = 0)
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EAS-predictable

The pair P, ` is eventually almost surely predictable if a learner Y
achieves ∀p ∈ P

p

( ∞∑
n=1

` (p,Y (X1, . . . ,Xn),Xn+1) <∞

)
= 1.
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Main idea

As in Cover’s case, we will connect eas-predictability to one that
can be done with finite number of samples.
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η−predictable

Q with loss ` is η−predictable if there exists a learner and number
Nη such that ∀p ∈ Q

p

 ∞∑
n=Nη

`(p,Yn,Xn+1) > 0

 ≤ η

η−nesting For η > 0, P1 ⊂ P2 · · · with
⋃

n Pn = P is an
η−nesting of P if each Pn is η−predictable
Universal nesting P1 ⊂ P2 · · · with

⋃
n Pn = P is an universal

nesting of P if for all η > 0, each Pn is η−predictable
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Characterization:

Theorem

If there is a universal nesting of P, (P, `) is e.a.s.-predictable.
If (P, `) is e.a.s.-predictable then for each η > 0, there is an
η−nesting of P.

This base result can be strengthened in several ways as we will see.
While the result above is intuitive, its usage in various contexts is
what is interesting.
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Applications

Diagonalization arguments often yield a matching converse

Insurance: Given X1, . . . ,Xn predict an upper bound on the next
sample (loss =0 if prediction Φ(X1, . . . ,Xn) > Xn+1.

Finite errors iff P =
⋃

n Pn, Pn tight (Wu, Santhanam 19)

Classification: Given an instance space Rd , a hypothesis space H
and examples Xi , h(Xi ), i = 1, . . . ,n, chosen from an arbitrary dist.
µ, predict h(Xn+1).

Finite errors iff H =
⋃

nHn, Hn effectively single hypothesis
(WS, submitted)

Other formulations: entropy estimation (Wu-Santhanam,
submitted), rank of matrices (Wu-Santhanam, arxiv), estimation of
Markov chains · · ·

Open Problem: Is universal nesting necessary in general?
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Strengthening other results

Guiding technique here is finding appropriate decompositions

Doing so allows us to recover all the results in (Dembo-Peres, 94)
and (Koplowitz et al., 97) with simple elementary proofs

Moreover, our approach provides stronger converse theorems than
in (Dembo-Peres, 94)

17 / 28
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Even though eas-predictable class have prediction rules that make
only finitely many errors, we do not have any guarantee on when it
will stop making errors...

”This is a characterization of the problem and is not a fault of the
test” – (Cover, 1973)

However, from practical consideration, one may still hope a
stopping rule that specifies when the mistakes will stop.
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e.a.s.-learnable

Suppose (P, `) is e.a.s.-predictable.

If for any η > 0 there is a stopping rule τη that predicts with
confidence 1− η when we have made the last error, then (P, `) is
e.a.s.-learnable.
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Identifiability

Let U be a collection of i.i.d. processes over sequences of naturals
and Q ⊂ U .

Q is identifiable in U if 1(p ∈ Q) is e.a.s.-learnable.

For example, Q is identifiable in U iff the single letter
marginals of Q are relatively open in U with respect to `1 metric.

More involved definition for non i.i.d. collections in terms of
universal nesting of Q for the property 1(p ∈ Q).

20 / 28
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Characterization of eas-learnable

Theorem

A class P with a loss ` is eas-learnable, if there is a nesting
{Pn}n∈N of P such that

1. For all n ∈ N, (Pn, `) is uniformly predictable;

2. For all n ∈ N, Pn is identifiable in P.

Again, the converse holds in several problems as we will see

21 / 28
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Applications

Matching converses again. All problems only require with high
confidence.

Insurance: Given X1, . . . ,Xn predict an upper bound on the next
sample (loss =0 if prediction Φ(X1, . . . ,Xn) > Xn+1)

Learnable iff P =
⋃

n Pn, Pn tight, relatively open
(Santhanam, Anantharam 16)
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Applications

Compression: Given i.i.d. samples from some p ∈ P, find universal
compressor q and a stopping time such that per-symbol codelength
difference falls and remains ≤ δ (Santhanam, Anantharam,
Szpankowski) Tomorrow afternoon?

Countable collection of “compressible” classes
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Applications

Markov estimation: Samples from a binary Markov source with
arbitrary memory (and arbitrarily slow mixing), given accuracy ε,
estimate conditional and stationary probabilities associated with
arbitrary strings. Stopping rule (Asadi-Paravi-Santhanam 14-17,
Wu-Santhanam, arxiv)

Coupling from the past, continuity condition
Clustering algorithms (Paravi-Santhanam 18)
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Conclusion

Our framework provides a way of resolving estimation and
prediction problems that involve (really) large model class.

The construction of eas-prediction rules will often result in a
natural regularization on the model classes

The eas-learning framework could be used as an alternative for
uniform consistency in very rich settings
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Other things we are thinking about

Bayesian priors: brittle vs. not brittle

Learning: (when) can you uniformly sample from the space of all
labelings? (Wu, Santhanam 20)

Feedforward neural networks with threshold activations

Ad-hoc: Use predictions on eigenvalue-related properties during
training?
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Conclusion

Several extensions may be considered for further research:

1. Consider restricted prediction rules, e.g. computational
bounded predictors (partial results in (Wu-Santhanam,
submitted) ;

2. Consider interactive sampling process, i.e. the prediction will
affect the sampling

3. Bounds on the stopping time, e.g. optimal expectation of the
stopping time
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Thank you!
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