Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	00000	00	0000000	0000

Prediction and Learning with eventual almost sure guarantees

Narayana Santhanam (Univ of Hawaii, Manoa)

<u>Joint work with</u> C Wu (Univ of Hawaii, Manoa)

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	0000000	00000	00	0000000	0000

Prediction and Learning with eventual almost sure guarantees

Narayana Santhanam (Univ of Hawaii, Manoa)

Joint work with C Wu (Univ of Hawaii, Manoa) M. Asadi, R. Paravi (UH), V. Anantharam and W.Szpankowski

> From local to global information workshop Feb. 5, 2020

Intro ●0	eg 00000000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Intro	duction				

Theme: A different kind of statistical guarantee

$\label{eq:meta-question 1: Expanding uniform consistency to finitely many errors$

Meta-question 2: If finitely many errors, stopping rule that anticipates the last error

Intro ⊙●	eg 00000000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Resul	ts				

Characterization of

(i) model classes that admit predictors with finitely many errors, and

(ii) when there is a stopping rule that anticipates (with any given confidence) the point at which the last error is made

The first is a story of regularization (i.e. breaking the model class into smaller simpler classes appropriate for the amount of data on hand) and the second that of identifiability of the subclasses in the regularization

Seem impossible when rationals are dense in the real line

Seem impossible when rationals are dense in the real line, but in fact, there is a scheme that makes only finitely many errors! (for all rational, all irrationals except a Lebesgue measure 0 set)

Seem impossible when rationals are dense in the real line, but in fact, there is a scheme that makes only finitely many errors! (for all rational, all irrationals except a Lebesgue measure 0 set)

In anticipation of our results, we will take a regularization view

Intro 00	eg ○●○○○○○○	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Regula	arization				

1

Build set S_n as follows:

0

Intro 00	eg 0●000000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Regula	arization				

Build set S_n as follows:

0 only irrationals 1

Intro 00	eg ○●○○○○○○	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Regula	arization				

Build set S_n as follows:

add back in first n rationals

Intro 00	eg ○●○○○○○○	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Regula	arization				

Build set S_n as follows:

Intro 00	eg ○●○○○○○○	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Regula	arization				

Build set S_n as follows:

Note $\mathcal{S}_1 \subset \mathcal{S}_2 \subset ...$

Intro 00	eg ○●○○○○○○	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Regul	arization				

Build set S_n as follows:

Note $S_1 \subset S_2 \subset ...$ In S_n , total measure removed $\leq \frac{1}{n}$. If

$$S = \bigcup_n S_n,$$

 ${\cal S}$ has measure 1 and contains every rational.

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00●00000	00000	00		0000
Predic	ction in eac	ch subclass \mathcal{S}_{l}	7		

In each S_n : rational vs irrational with confidence $1 - 2^{-n}$?

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00●00000	00000	00		0000
Predic	tion in eac	ch subclass \mathcal{S}_{t}	n		

In each S_n : rational vs irrational with confidence $1 - 2^{-n}$? Every rational in S_n is at least $\frac{1}{n2^n}$ away from an irrational

In each S_n : rational vs irrational with confidence $1 - 2^{-n}$?

Every rational in S_n is at least $\frac{1}{n2^n}$ away from an irrational

For any confidence, in particular $1 - 2^{-n}$, there exists sample size b_n large enough that we can decide rationality of sources in S_n

Intro 00	eg 000●0000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Pred	iction for ${\cal S}$				

What about \mathcal{S} ?

Intro 00	eg 000●0000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Pred	iction for ${\cal S}$	•			

What about \mathcal{S} ?

Break into phases n'th phase: $b_n \leq \text{sample size} < b_{n+1}$, use estimaxtor for S_n

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	000●0000	00000	00		0000
Pred	iction for ${\cal S}$				

Break into phases *n*'th phase: $b_n \leq$ sample size $< b_{n+1}$, use estimaxtor for S_n

Every rational in S will eventually show up in S_m for some finite m, after which, the probability of error is $1/2^m$ in any phase

Intro 00	eg 000●0000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Pred	iction for ${\cal S}$				

Break into phases *n*'th phase: $b_n \leq$ sample size $< b_{n+1}$, use estimaxtor for S_n

Every rational in S will eventually show up in S_m for some finite m, after which, the probability of error is $1/2^m$ in any phase error only in finite number of phases (Borel-Cantelli)

Intro 00	eg 000●0000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Predi	iction for ${\cal S}$				

Break into phases *n*'th phase: $b_n \leq$ sample size $< b_{n+1}$, use estimaxtor for S_n

Every rational in S will eventually show up in S_m for some finite m, after which, the probability of error is $1/2^m$ in any phase error only in finite number of phases (Borel-Cantelli)

For any irrational in S, error in each phase *m* is $1/2^m$,

Intro 00	eg 000●0000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Predi	iction for ${\cal S}$				

Break into phases n'th phase: $b_n \leq$ sample size $< b_{n+1}$, use estimaxtor for S_n

Every rational in S will eventually show up in S_m for some finite m, after which, the probability of error is $1/2^m$ in any phase error only in finite number of phases (Borel-Cantelli)

For any irrational in S, error in each phase m is $1/2^m$, again error only in finite number of phases (Borel-Cantelli)

Intro 00	eg 000●0000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Predi	ction for ${\cal S}$				

Break into phases n'th phase: $b_n \leq \text{sample size} < b_{n+1}$, use estimaxtor for S_n

Every rational in S will eventually show up in S_m for some finite m, after which, the probability of error is $1/2^m$ in any phase error only in finite number of phases (Borel-Cantelli)

For any irrational in S, error in each phase m is $1/2^m$, again error only in finite number of phases (Borel-Cantelli)

Therefore, no matter what the source, only finite number of errors!



We show the converse also holds: if any \mathcal{S} admits a finite-error rationality estimator with only finite number of errors, then

$$S = \bigcup_n S_n$$

where $\mathcal{S}_1 \subset \mathcal{S}_2 \subset \cdots$ and each \mathcal{S}_n satisfies

 $\inf\{|r - x| : r, x \in S_n \text{ and } r \text{ is rational, } x \text{ is irrational}\} > 0$

(Wu-Santhanam, arxiv)



We show the converse also holds: if any \mathcal{S} admits a finite-error rationality estimator with only finite number of errors, then

$$S = \bigcup_n S_n$$

where $\mathcal{S}_1 \subset \mathcal{S}_2 \subset \cdots$ and each \mathcal{S}_n satisfies

 $\inf\{|r - x| : r, x \in S_n \text{ and } r \text{ is rational, } x \text{ is irrational}\} > 0$

(Wu-Santhanam, arxiv)

Namely, each S_n can be handled with arbitrary confidence with a finite sample size

If ${\cal S}$ admits a finite-error rationality predictor, then we can always find a regularization to tackle it

Intro 00	eg 00000●00	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Rank	Estimation	<u>]</u>			

Let **X** be a $d \times d$ random matrix with entries $X_{i,j}$ to be independent Bernoulli random variables. Denote $p_{i,j} = \mathbb{E}[X_{i,j}]$ and $\mathbb{E}[X]$ be the matrix with entries $p_{i,j}$.

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000●00	00000	00		0000
Rank I	Estimation				

Let **X** be a $d \times d$ random matrix with entries $X_{i,j}$ to be independent Bernoulli random variables. Denote $p_{i,j} = \mathbb{E}[X_{i,j}]$ and $\mathbb{E}[X]$ be the matrix with entries $p_{i,j}$.

 X_1, \cdots, X_n are *i.i.d.* samples of X, which are $d \times d$ binary matrices.

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000●00	00000	00		0000
Rank I	Estimation				

Let **X** be a $d \times d$ random matrix with entries $X_{i,j}$ to be independent Bernoulli random variables. Denote $p_{i,j} = \mathbb{E}[X_{i,j}]$ and $\mathbb{E}[X]$ be the matrix with entries $p_{i,j}$.

 X_1, \cdots, X_n are *i.i.d.* samples of X, which are $d \times d$ binary matrices.

How could we *reasonably* estimate $Rank(\mathbb{E}[X])$ by observing X_1, \dots, X_n ?

Intro 00	eg 000000●0	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Rank	Estimation	1			

A naive way is to compute

$$\bar{\mathbf{X}}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k,$$

and use $\text{Rank}(\bar{\mathbf{X}}_n)$ as an estimation of $\text{Rank}(\mathbb{E}[\mathbf{X}])$.

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	000000●0	00000	00		0000
Rank	Estimation				

A naive way is to compute

$$\bar{\mathbf{X}}_n = \frac{1}{n} \sum_{k=1}^n \mathbf{X}_k,$$

and use $\operatorname{Rank}(\bar{\mathbf{X}}_n)$ as an estimation of $\operatorname{Rank}(\mathbb{E}[\mathbf{X}])$.

However, such an estimation is not *reasonable* since $\bar{\mathbf{X}}_n$ is full rank w.h.p. even for matrices $\mathbb{E}[\mathbf{X}]$ with same entries.

Intro 00	eg 0000000●	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Rank	Estimation	<u>1</u>			

It seems one can't estimate the rank at all, since arbitrary small perturbation on $\mathbb{E}[\mathbf{X}]$ will significantly change the rank.

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	0000000●	00000	00		0000
Rank	Estimation				

It seems one can't estimate the rank at all, since arbitrary small perturbation on $\mathbb{E}[\mathbf{X}]$ will significantly change the rank.

We show that there exist an estimator $\boldsymbol{\Phi}$ such that

$$\Phi(\mathbf{X}_1, \cdots, \mathbf{X}_n) \rightarrow \mathsf{Rank}[\mathbf{X}] \text{ w.p. } 1$$

as $n \to \infty$.

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	0000000	●0000	00		0000
eas-p	redictable				

\mathcal{P} : class of models over support \mathbb{N} $X_1, X_2, \cdots \sim p \in \mathcal{P}$

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	●0000	00		0000
eas-predictable					

 \mathcal{P} : class of models over support \mathbb{N} $X_1, X_2, \dots \sim p \in \mathcal{P}$

At step *n*: learner outputs $Y(X_1, \ldots, X_n)$ and is scored with a binary loss

$$\ell: \mathcal{P} \times \mathcal{X} \times \mathcal{Y} \to \{0,1\}$$

(Property we predict implicitly defined by the set $\ell=0$)

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	0000000	0●000	00		0000
EAS-predictable					

The pair \mathcal{P} , ℓ is *eventually almost surely* predictable if a learner Y achieves $\forall p \in \mathcal{P}$

$$p\left(\sum_{n=1}^{\infty}\ell\left(p,Y(X_1,\ldots,X_n),X_{n+1}\right)<\infty\right)=1.$$

Intro 00	eg 00000000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Mair	n idea				

As in Cover's case, we will connect eas-predictability to one that can be done with finite number of samples.

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	000●0	00		0000
$\eta-pre$	dictable				

Q with loss ℓ is η -predictable if there exists a learner and number N_η such that $\forall p \in Q$

$$p\left(\sum_{n=N_{\eta}}^{\infty}\ell(p,Y_{n},X_{n+1})>0
ight)\leq\eta$$

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	000●0	00		0000
$\eta-pre$	dictable				

Q with loss ℓ is η -predictable if there exists a learner and number N_η such that $\forall p \in Q$

$$p\left(\sum_{n=N_{\eta}}^{\infty}\ell(p,Y_{n},X_{n+1})>0
ight)\leq\eta$$

 η -nesting For $\eta > 0$, $\mathcal{P}_1 \subset \mathcal{P}_2 \cdots$ with $\bigcup_n \mathcal{P}_n = \mathcal{P}$ is an η -nesting of \mathcal{P} if each \mathcal{P}_n is η -predictable

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	000●0	00		0000
$\eta-pre$	dictable				

Q with loss ℓ is η -predictable if there exists a learner and number N_η such that $\forall p \in Q$

$$p\left(\sum_{n=N_{\eta}}^{\infty}\ell(p,Y_{n},X_{n+1})>0
ight)\leq\eta$$

 η -nesting For $\eta > 0$, $\mathcal{P}_1 \subset \mathcal{P}_2 \cdots$ with $\bigcup_n \mathcal{P}_n = \mathcal{P}$ is an η -nesting of \mathcal{P} if each \mathcal{P}_n is η -predictable Universal nesting $\mathcal{P}_1 \subset \mathcal{P}_2 \cdots$ with $\bigcup_n \mathcal{P}_n = \mathcal{P}$ is an universal nesting of \mathcal{P} if for all $\eta > 0$, each \mathcal{P}_n is η -predictable

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	0000●	00		0000
Char	acterizatio	n:			

Theorem

If there is a universal nesting of \mathcal{P} , (\mathcal{P}, ℓ) is e.a.s.-predictable. If (\mathcal{P}, ℓ) is e.a.s.-predictable then for each $\eta > 0$, there is an η -nesting of \mathcal{P} .

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	0000●	00		0000
Char	acterizatio	n:			

Theorem

If there is a universal nesting of \mathcal{P} , (\mathcal{P}, ℓ) is e.a.s.-predictable. If (\mathcal{P}, ℓ) is e.a.s.-predictable then for each $\eta > 0$, there is an η -nesting of \mathcal{P} .

This base result can be strengthened in several ways as we will see. While the result above is intuitive, its usage in various contexts is what is interesting.

Intro 00	eg 00000000	General Framework	Applications •0	Stopping Rule	Conclusion 0000
Appl	ications				

Intro 00	eg 00000000	General Framework	Applications •0	Stopping Rule	Conclusion 0000
Appli	cations				

Insurance: Given X_1, \ldots, X_n predict an upper bound on the next sample (loss =0 if prediction $\Phi(X_1, \ldots, X_n) > X_{n+1}$.

Intro 00	eg 00000000	General Framework	Applications •0	Stopping Rule	Conclusion 0000
Applic	cations				

Insurance: Given X_1, \ldots, X_n predict an upper bound on the next sample (loss =0 if prediction $\Phi(X_1, \ldots, X_n) > X_{n+1}$. Finite errors iff $\mathcal{P} = \bigcup_n \mathcal{P}_n$, \mathcal{P}_n tight (Wu, Santhanam 19)

Intro 00	eg 00000000	General Framework	Applications • 0	Stopping Rule	Conclusion 0000
Appl	ications				

Insurance: Given X_1, \ldots, X_n predict an upper bound on the next sample (loss =0 if prediction $\Phi(X_1, \ldots, X_n) > X_{n+1}$. Finite errors iff $\mathcal{P} = \bigcup_n \mathcal{P}_n$, \mathcal{P}_n tight (Wu, Santhanam 19)

Classification: Given an instance space \mathbb{R}^d , a hypothesis space \mathcal{H} and examples X_i , $h(X_i)$, i = 1, ..., n, chosen from an arbitrary dist. μ , predict $h(X_{n+1})$.

Intro 00	eg 00000000	General Framework	Applications ●○	Stopping Rule	Conclusion 0000
Appl	ications				

Insurance: Given X_1, \ldots, X_n predict an upper bound on the next sample (loss =0 if prediction $\Phi(X_1, \ldots, X_n) > X_{n+1}$. Finite errors iff $\mathcal{P} = \bigcup_n \mathcal{P}_n$, \mathcal{P}_n tight (Wu, Santhanam 19)

Classification: Given an instance space \mathbb{R}^d , a hypothesis space \mathcal{H} and examples X_i , $h(X_i)$, i = 1, ..., n, chosen from an arbitrary dist. μ , predict $h(X_{n+1})$.

Finite errors iff $\mathcal{H} = \bigcup_n \mathcal{H}_n$, \mathcal{H}_n effectively single hypothesis (WS, submitted)

Intro 00	eg 00000000	General Framework	Applications ●○	Stopping Rule	Conclusion 0000
Appl	ications				

Insurance: Given X_1, \ldots, X_n predict an upper bound on the next sample (loss =0 if prediction $\Phi(X_1, \ldots, X_n) > X_{n+1}$. Finite errors iff $\mathcal{P} = \bigcup_n \mathcal{P}_n$, \mathcal{P}_n tight (Wu, Santhanam 19)

Classification: Given an instance space \mathbb{R}^d , a hypothesis space \mathcal{H} and examples X_i , $h(X_i)$, i = 1, ..., n, chosen from an arbitrary dist. μ , predict $h(X_{n+1})$.

Finite errors iff $\mathcal{H} = \bigcup_n \mathcal{H}_n$, \mathcal{H}_n effectively single hypothesis (WS, submitted)

Other formulations: entropy estimation (Wu-Santhanam, submitted), rank of matrices (Wu-Santhanam, arxiv), estimation of Markov chains · · ·

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	00000	• 0		0000
Appl	ications				

Insurance: Given X_1, \ldots, X_n predict an upper bound on the next sample (loss =0 if prediction $\Phi(X_1, \ldots, X_n) > X_{n+1}$. Finite errors iff $\mathcal{P} = \bigcup_n \mathcal{P}_n$, \mathcal{P}_n tight (Wu, Santhanam 19)

Classification: Given an instance space \mathbb{R}^d , a hypothesis space \mathcal{H} and examples X_i , $h(X_i)$, i = 1, ..., n, chosen from an arbitrary dist. μ , predict $h(X_{n+1})$.

Finite errors iff $\mathcal{H} = \bigcup_n \mathcal{H}_n$, \mathcal{H}_n effectively single hypothesis (WS, submitted)

Other formulations: entropy estimation (Wu-Santhanam, submitted), rank of matrices (Wu-Santhanam, arxiv), estimation of Markov chains · · ·

Open Problem: Is universal nesting necessary in general?

Intro 00	eg 00000000	General Framework	Applications ○●	Stopping Rule	Conclusion 0000
Stren	igthening c	ther results			

Guiding technique here is finding appropriate decompositions

Doing so allows us to recover all the results in (Dembo-Peres, 94) and (Koplowitz et al., 97) with simple elementary proofs

Moreover, our approach provides stronger converse theorems than in (Dembo-Peres, 94)

Intro 00	eg 00000000	General Framework	Applications 00	Stopping Rule	Conclusion 0000

Even though eas-predictable class have prediction rules that make only finitely many errors, we do not have any guarantee on when it will stop making errors...

Intro 00	eg 00000000	General Framework	Applications 00	Stopping Rule	Conclusion 0000

Even though eas-predictable class have prediction rules that make only finitely many errors, we do not have any guarantee on when it will stop making errors...

"This is a characterization of the problem and is not a fault of the test" – (Cover, 1973)

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	00000	00		0000

Even though eas-predictable class have prediction rules that make only finitely many errors, we do not have any guarantee on when it will stop making errors...

"This is a characterization of the problem and is not a fault of the test" – (Cover, 1973)

However, from practical consideration, one may still hope a stopping rule that specifies when the mistakes will stop.

Intro 00	eg 00000000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
e.a.s.	-learnable				

Suppose (\mathcal{P}, ℓ) is *e.a.s.*-predictable.

If for any $\eta > 0$ there is a stopping rule τ_{η} that predicts with confidence $1 - \eta$ when we have made the last error, then (\mathcal{P}, ℓ) is *e.a.s.*-learnable.

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000		00	00●0000	0000
Ident	ifiability				

Let \mathcal{U} be a collection of *i.i.d.* processes over sequences of naturals and $\mathcal{Q} \subset \mathcal{U}$.

 \mathcal{Q} is identifiable in \mathcal{U} if $1(p \in \mathcal{Q})$ is *e.a.s.*-learnable.

For example, Q is identifiable in U iff the single letter marginals of Q are relatively open in U with respect to ℓ_1 metric.

More involved definition for non *i.i.d.* collections in terms of universal nesting of Q for the property $1(p \in Q)$.

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000		00	000●000	0000
Char	acterizatior	n of eas-learna	able		

Theorem

A class \mathcal{P} with a loss ℓ is eas-learnable, if there is a nesting $\{\mathcal{P}_n\}_{n\in\mathbb{N}}$ of \mathcal{P} such that

- 1. For all $n \in \mathbb{N}$, (\mathcal{P}_n, ℓ) is uniformly predictable;
- 2. For all $n \in \mathbb{N}$, \mathcal{P}_n is identifiable in \mathcal{P} .

Again, the converse holds in several problems as we will see

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000		00	0000●00	0000
Appli	cations				

Matching converses again. All problems only require with high confidence.

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000		00	0000●00	0000
Appli	cations				

Matching converses again. All problems only require with high confidence.

Insurance: Given X_1, \ldots, X_n predict an upper bound on the next sample (loss =0 if prediction $\Phi(X_1, \ldots, X_n) > X_{n+1}$) Learnable iff $\mathcal{P} = \bigcup_n \mathcal{P}_n$, \mathcal{P}_n tight, relatively open (Santhanam, Anantharam 16)

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000		00	00000●0	0000
Appli	cations				

Compression: Given *i.i.d.* samples from some $p \in \mathcal{P}$, find universal compressor q and a stopping time such that per-symbol codelength difference falls and remains $\leq \delta$ (Santhanam, Anantharam, Szpankowski) Tomorrow afternoon? Countable collection of "compressible" classes

Intro 00	eg 00000000	General Framework	Applications 00	Stopping Rule	Conclusion 0000
Appli	cations				

Markov estimation: Samples from a binary Markov source with arbitrary memory (and arbitrarily slow mixing), given accuracy ϵ , estimate conditional and stationary probabilities associated with arbitrary strings. Stopping rule (Asadi-Paravi-Santhanam 14-17, Wu-Santhanam, arxiv)

Coupling from the past, continuity condition Clustering algorithms (Paravi-Santhanam 18)

Intro 00	eg 00000000	General Framework	Applications 00	Stopping Rule	Conclusion •000
Conc	lusion				

Our framework provides a way of resolving estimation and prediction problems that involve (really) large model class.

The construction of eas-prediction rules will often result in a natural regularization on the model classes

The eas-learning framework could be used as an alternative for uniform consistency in very rich settings

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	00000	00		0000
Other	things we	are thinking	about		

Bayesian priors: brittle vs. not brittle

Learning: (when) can you uniformly sample from the space of all labelings? (Wu, Santhanam 20) Feedforward neural networks with threshold activations

Ad-hoc: Use predictions on eigenvalue-related properties during training?

Intro 00	eg 00000000	General Framework	Applications 00	Stopping Rule	Conclusion 00●0
Conc	lusion				

Several extensions may be considered for further research:

- Consider restricted prediction rules, e.g. computational bounded predictors (partial results in (Wu-Santhanam, submitted);
- 2. Consider interactive sampling process, i.e. the prediction will affect the sampling
- 3. Bounds on the stopping time, e.g. optimal expectation of the stopping time

Intro	eg	General Framework	Applications	Stopping Rule	Conclusion
00	00000000	00000	00	000000	0000

Thank you!

