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Motivation: detection of small clusters in large and noisy graphs

-Real large-scale graphs have rich local structure

-We often have to detect small clusters in large and
Nnoisy graphs:

Rather than partitioning graphs with
nice structure

US-Senate graph,
nice bi-partition in year 1865 around the end of

protein-protein interaction graph, . ~
the American civil ward

color denotes similar functionality



Our goals

Large scale data with multiple noisy small-scale and meso-scale
clusters determine the need for

-new methods that are able probe graphs with billions of nodes anad
edges,

-the running time of the new methods should depend on the size of
the output instead of the size of the whole graph,

-the new methods should be supported by worst- and average-case
theoretical guarantees.




Existing and new local graph clustering methods

The vast majority of methods perform some sort of linear diffusion,
l.e., PageRank. We need models that are better than simply
averaging of probabillities.

-AS a warm-up: non-linear PageRank.

-Non-linear combinatorial diffusions.

-Non-linear diffusions which balance between spectral and
combinatorial diffusions.



Current local and global developments for local graph clustering
methods

Local to global

Q Local analysis




About this talk

-I will mostly discuss methods, | will demonstrate theoretical results
and | will present experiments that promote understanding of the
methods within the available time.

-For extensive experiments on real-data please check the cited
papers. We literally have performed hundreds of experiments for
measuring performance of local graph clustering methods.



| ocal Graph Clustering



The local graph clustering problem?

_Definition: find set of nodes A given a seed node in set B
_Set A has good precision/recall w.r.t set B
_The running time depends on A instead of the whole graph



Facebook Johns Hopkins social network: color denotes class year

Students of year 2009

Data: Facebook Johns Hopkins, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012



Local graph clustering: example

Data: Facebook Johns Hopkins, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012



Protein structure similarity: color denotes similar function
‘

Data: The MIPS mammalian protein-protein interaction database. Bioinformatics, 21(6):832-834, 2005




Local graph clustering finds 2% of the graph

Data: The MIPS mammalian protein-protein interaction database. Bioinformatics, 21(6):832-834, 2005




Local graph clustering finds 1% of the graph

Data: The MIPS mammalian protein-protein interaction database. Bioinformatics, 21(6):832-834, 2005



Or we might want to detect galaxies

100




Warm-up: non-linear PageRank



Some definitions

Graph:G=( V , E ), |V|=n |E|=m

nodes edges

-n X n adjacency matrix: A

_An element of A is equal to 1 if two nodes are connected



Some definitions

-Degree matrix: D = diag(Al),), 1, is a vector of all ones.

-Each element of D shows the number of neighbors of a node

_Random walk matrix: AD ™!

1
Lazy random walk matrix: W = — (] 4 AD‘l)

2

_Graph Laplacian: L =D — A



Linear diffusion: personalized PageRank
Leta € (0,1) be the teleportation parameter

-Consider a diffusion process where we perform lazy random walk with
probability 1 — a, and jump to a given seed node with probability a:

asl,{ + (1 —a)W

-where s is an indicator vector of the seed node and alpha is the teleportation
parameter.

-Simple idea: use a random walk from a seed node. The nodes with the
highest probability after k steps consist a cluster.



Let’s get rid off the tall

-For the stationary personalized PageRank vector most of the
probability mass Is concentrated around the seed node.

- This means that the ordered personalized PageRank vector has long
tail for nodes far away from the seed node.

-We can eftficiently cut the tale using I1-regularized PageRank without
even having to compute the long tail.




Non-linear PageRank diffusion

-Instead of using power method to compute the PageRank vector, we
can perform a non-linear power method where we do a random walk
step first and then threshold small values to zero.

Pial = proxpad”.‘h( (1l —a)Wp, +as )

random walk step

-where prox operator reduces components smaller than pad to zero.

x—pad It x> pad

[OX A) =
P padl\-\h( ) {() otherwise



Far stretched relation to graph neural networks

Non-linear PageRank

P = prOXpadH-Hl( (1l —a)Wp, +as )

random walk step

Graph Neural Network Layer

P = ReLU(Random Walk Matrix x Parameters X p,)



L1-regularized PageRank

- The stationary vector of the non-linear PageRank diffusion
corresponds to the optimal solution of the [1-regularized PageRank

problem:
.. 15 T
minimize —x” Qxr — ax” s+ pal||Dz|;
) \———
D e
1 f(o) o)
where Q) = aD A ;aL

Fountoulakis et al. Variational Perspective of Local Graph Clustering, Mathematical Programming, 2017



Properties of the |1-regularized optimal solution

-Theorem

-1t the graph is unweighted then the number of nonzero nodes in the
optimal solution is bounded by 1/p.

-1t the graph is weighted then the volume of nonzero nodes in the optimal
solution is bounded by 1/p.

Fountoulakis et al. Variational Perspective of Local Graph Clustering, Mathematical Programming, 2017



The solution path iIs monotonic

-Theorem
-Let X(p) be the solution of the I1-regularized problem as a function of p.

-Then X(p) is a component-wise monotone function

X(po) < X(py) 101 py > py

- [he Inequality becomes strict when a component Is positive.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020



Stage-wise for recovering the whole path

-Stage-wise algorithm

1) Choose ¢ such that |d;1Vz-f(xk)| is the largest among [n|

T
d;

2) Update [rgi1]; = [xr]: 1

-Corollary

- The stage-wise algorithm converges to the |1-regularized solution path it
we drag the step-size 717 of the algorithm to zero.

-The running time of stage-wise depends on the nonzero nodes and its
neighbors and not on the size of the whole graph.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020



Stage-wise for recovering the whole path - example

L1-reg. Path Stagewise path 77 = 10~
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W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020



What if we do not want to recover the whole path?

1
minimize §£ETQ$ —arls+ pa||Dx||

N——— v

() 7o)

Proximal gradient descent

| 1
Try1 = argmin g(x) + flzg) +(Vf(zg), r — x1) T 5”37 — ijH%
Vv %,_/

first-order Taylor approximation ., e bound on the

approximation error

Requires careful implementation to avoid excessive running time

-Need to maintain a set of non-zero nodes
-Update x and gradient only for non-zero nodes and their neighbors at
each Iteration

Fountoulakis et al. Variational Perspective of Local Graph Clustering, Mathematical Programming, 2017



Theorem: non-decreasing non-zero nodes
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Fountoulakis et al. Variational Perspective of Local Graph Clustering, Mathematical Programming, 2017



Open problem: is accelerated prox. grad. a local algorithm?

1600

oo = mm e e = e e : Gradient descent running time

% (vo\(ﬁ))
H

Accel. gradient descent
— Accelerated prox. grad.
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-1 strong convexity parameter of the problem.



Two ways to measure performance of the I1-regularized PageRank
model

Average-case

-Performance under stochastic block model - recover a cluster using the
output of [1-regularized PageRank.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020

Worst-case

-Use conductance to measure quality of the output. Show that the output
has conductance value similar to a target cluster around the seed node.

Fountoulakis et al. Variational Perspective of Local Graph Clustering, Mathematical Programming, 2017

Zhu et al. A local algorithm for finding well-connected clusters, ICML, 2013



Average-case guarantees



Average-case performance

Local random model
-Given a graph G with n nodes, let K be a target cluster inside G.

-Two nodes in K are connected with probability p
-Nodes in K are connected K with probability g.

-The rest of edges can be drawn using any other model.



Expected |1-regularized PageRank

-The optimal solution of the expected problem identities the target cluster.

-Theorem
-Suppose that the seed node is selected from target cluster K. The optimal
solution of |
X* = argminExT—[Q]x — ax’s + pa||E[D]x||,
-satisfies

supp(x®) = K
;aslongasp =0 (p/c? )

‘where d is the expected degree of nodes In the target cluster.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020



Results for 11-regularized PageRank for noisy data

-In practice, we do not have access to the expected graph. We are given a
realization of the local random model that includes "noise”, I.e., edges from
the target cluster to the rest of the graph.

-We have two results for the noisy case.
-First result.

-/ero false negatives.

-Bounded false positives.

-Second result.

-With additional assumptions on the seed nodes we can show exact
recovery.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020



Results for 11-regularized PageRank for noisy data

-Theorem (bounded false positives)

_Suppose p*k > O(log k), where k is the size of the target cluster

and p = 0 (yp/d*)
-where y = pk/J, .e., the probabillity of staying inside the target

cluster in one step.

_Then with probability 1 — 6exp(—O(p?k)) the optimal solution of the realized
problem has zero false negatives and the false positives are bounded

VOI(FP) < vo\(K)(@ (iz) — 1)
Y

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020



Results for 11-regularized PageRank for noisy data

1.0- Definitions

0.8 O(B) = number of edges leaving B )

"~ \ sum of edges of vertices in B
D
8 0-6 Assuming B is the
7y smaller part of the graph
—
L 0.4 -
pk
0.2 =@==_Best performance where y =—, l.e, the
== Perf. for minimum conductance (d
05 04 N N probability of staying inside the

Y target cluster in one step.



Results for 11-regularized PageRank for noisy data

-Theorem (exact recovery)
Letg = O (1/n)

_Then with probability at least 1 — @(e ™) there exists a good seed
node such that if we use that seed node we get

supp(x) = K

-As long as

1 . )
%Zﬁ(—) Vie K
rP

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020



Results for 11-regularized PageRank for noisy data

-The assumption thatg = O (1/n)

-implies that there are constant number of edges leaving the cluster,
which sounds artificial.

-pbut it Is not, because It also covers the case were the size of the target

cluster is k = O(1)

-This Is a realistic local graph clustering setting where we attempt to
recover a very small target cluster of constant size with constant number

of edges leaving the cluster.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020



Worst-case guarantees



Some definitions

-Conductance of target cluster b5:

Assuming B is the
smaller part of the graph

( number of edges leaving B )
DO(B) :=

sum of edges of vertices in B

-Internal connectivity of target cluster B

IC(B) := the minimum conductance of the subgraph induced by B



Worst-case performance

-Theorem (by Zhu et al.)

-Assume that the internal connectivity of the target cluster K is larger
than its conductance

IC*(K)
> Q(1)
d(K)log vol(K)
-False positives are bounded by
d(K)
VOI(FP) < O ( ) VOI(K)
IC(K)
- [rue positives are bounded by
d(K)
VOI(FN) < O ( ) VOI(K)
IC(K)

/Zhu et al. A local algorithm for tfinding well-connected clusters, ICML, 2013



Compare average- and worst-case

False Positives False Negatives
1
Average-case VOI(FP) < vo\(K)<@ (ﬁ) — 1) ZEro
Worst-case VOI(FP) < VOl(K)O((1 — y)log k) VOI(FN) < vol(K)O((1 — y)log k)

-The average-case result on FP is stronger for large values of .

-Also for the average-case we can also prove exact recovery.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020



Comparison to planted cluster model

-Example, p = 1 and g = O(log n/n)

-Using semidetfinite programming one can achieve exact recovery as long

as k > O(logn),

-while our results guarantee zero false negative and a constant proportion
of false positives.

-However, our model Is not allowed to touch the whole graph.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020



Combinatorial Diffusion:
Capacity Releasing Diffusion



Problem: spectral diffusions might leak mass

Target cluster:
Students of
Year 2008

Red nodes: output of the algorithm

¢ -regularized PageRank (best tuning)
Precision=0./3, Recall=0.91

Data: Facebook Colgate University, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012



Solving the problem of spreading mass indiscriminately by gradual
release of edge capacity

Spectral diffusions
-Even distribution of the residual probability mass to neighbors

Capacity Releasing Diffusion

-Controls the amount of mass to be send over an edge by using the height “h”
of a node

-In theory this results in bounded mass leaked outside of the target cluster

-In practice this results In much better precision and recall

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

Maintain mass ‘'m” and height “h”
for each node

degree(v): #edges of node v

Saturated nodes: m(v) >= deg(v)
Excess mass = max(m(v) - deg(v),0)

m=0, h=0 m=0, h=0

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(v): #edges of node v

Saturated nodes: m(v) >= deg(v)

=4 h=1 Excess mass = max(m(v) - deg(v),0)

@ Algorithm
Overflow the seed: m(A) = 2deg(A)

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(v): #edges of node v

Saturated nodes: m(v) >= deg(v)

=4 h=1 Excess mass = max(m(v) - deg(v),0)

@ Algorithm

terate

unsaturated nodes with

Push excess mass to
lower height

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(V): ;

-

‘edges of node v

Saturated nodes: m(v) >= deg(v)

m=4, h=1

Excess mass = max(m(v) - deg(v),0)

Algorithm

© e

terate

Pick node A (has excess mass)

and a neighbor of A with lower
height “h”

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(v): #edges of node v

Saturated nodes: m(v) >= deg(v)

=4 h=1 Excess mass = max(m(v) - deg(v),0)

@\ Algorithm

lterate
Pick node C

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(v): #edges of node v
Gradual release: do not push

more than the height of A Saturated nodes: m(V) > = deg(v)

=4 h=1 Excess mass = max(m(v) - deg(v),0)

Algorithm
Push 1 unit """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

lterate

Push at most "h" flow to a
chosen neighbor

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(v): #edges of node v

Saturated nodes: m(v) >= deg(v)
Excess mass = max(m(v) - deg(v),0)

Algorithm

terate

unsaturated nodes with

Push excess mass to
lower height

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(V): ;

-

‘edges of node v

Saturated nodes: m(v) >= deg(v)

terate

Excess mass = max(m(v) - deg(v),0)

Algorithm

Pick node A (has excess mass)

and a new edge of node A of
residual flow less than “h”

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(v): #edges of node v

Saturated nodes: m(v) >= deg(v)
Excess mass = max(m(v) - deg(v),0)

Algorithm

terate

m(v) <= deg(v) for all nodes v

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(v): #edges of node v

Saturated nodes: m(v) >= deg(v)
Excess mass = max(m(v) - deg(v),0)

Algorithm

terate

Overflow: m(v) = 2m(v)

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(V): ;

-

‘edges of node v

Saturated nodes: m(v) >= deg(v)

terate

Excess mass = max(m(v) - deg(v),0)

Algorithm

Pick node A (has excess mass)

and a neighbor of A with lower
height “h”

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(v): #edges of node v
Gradual release: do not push

more than the height of A Saturated nodes: m(V) > = deg(v)

=4 h=1 Excess mass = max(m(v) - deg(v),0)

Algorithm
Push 1 unit """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

lterate

Push at most "h" flow to a
chosen neighbor

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(V): ;

-

‘edges of node v

Saturated nodes: m(v) >= deg(v)

terate

Excess mass = max(m(v) - deg(v),0)

Algorithm

Note C has excess it has to be
added to the candidate nodes

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(V): ;

-

‘edges of node v

Saturated nodes: m(v) >= deg(v)

terate

Excess mass = max(m(v) - deg(v),0)

Algorithm

Pick node C (has excess mass)

and a neighbor of C with lower
height “h”

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(V): ;

-

‘edges of node v

Saturated nodes: m(v) >= deg(v)

terate

Excess mass = max(m(v) - deg(v),0)

Algorithm

There is no neighbor of C with
lower height so increase the

height of C by 1

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Capacity Releasing Diffusion algorithm

degree(v): #edges of node v

Saturated nodes: m(v) >= deg(v)
Excess mass = max(m(v) - deg(v),0)

Algorithm

terate

Repeat until there is no node
with excess mass

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Theoretical comparison to spectral diffusions

-Conductance of target 5 (“noise”): «®) :- ( number of edges leaving B ) Assuming B is the

sum of edges of vertices in B/ smaller part of the graph

-Internal connectivity (“signal”) of target B

IC(B) := the minimum conductance of the subgraph induced by B

Weaker assumptions

- Theoretical bound on FP/FN needs: “signal” polylog stronger than “noise”, as
opposed to: quadratically stronger tor spectral methods

Better worst-case guarantees

-Output A satisfies P(A) < O(D(B)), as opposed to P(A) < O(D(B)/IC(B))
Better running time

_The running time is 1/1C(B) times faster than spectral

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Example on Facebook Colgate University social network

BNy T T

Year 2008

L
R

¢ 1-regularized PageRank(best tuning) Capacity Releasing Diffusion
Precision=0.73, Recall=0.94 Precision=0.93, Recall=0.94

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



Example on Facebook Johns Hopkins social network

Same major

¢ 1-regularized PageRank (best tuning) Capacity Releasing Diffusion
Precision=0.71, Recall=0.91 Precision=0.87, Recall=0.94

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017



p-norm Flow Diffusions



Spectrum of methods

Spectral Diffusions Combinatorial Diffusions

1

€.g., FageRank e.g., capacity releasing diffusion

easy to understand

| | robust to noise
fast in practice

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



Spectrum of methods

Spectral Diffusions Combinatorial Diffusions

T

p-norm flow diffusion

-p-norm flow diffusion is a family of convex optimization problems that
characterizes the trade-off between spectral and combinatorial diffusions.

-This allows us to define methods that are the best of both worlds.

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



Some definitions - incidence matrix

Incidence matrix B
A B € D E F G H

B-C | T I

...............................................................................................................................................................................

...............................................................................................................................................................................

...............................................................................................................................................................................

..............................................................................................................................................................................

-Ordering of edges and direction is arbitrary

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



Some definitions - flow variables

Let f be a vector and each component of f corresponds to an edge,
for example:

-The magnitude of fis the amount of flow that passes through an edge
-The sign of fis the direction of flow

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



Some definitions - net flow

Let A be a non-negative vector, each component of A indicates the initial
mass at a node.

B'f is a vector that captures the net flow on a node.

-BTf+ A indicates the net mass on every node.

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



Node capacities

-We will require that each node has capacity equal to its degree d;

“We will say that the initial mass A has been diffused, when the net mass on
each node Is less than its capacity:

B'f+ A < d

——

net mass per node  capacity per noae

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



Diffusion as an optimization formulation

-Out of all possible flows f that satisfy the capacities we are interested in the
one with minimum Lp norm, where p € [2,00).

minimize || f||,

subject to: BT f + A < d

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



Relation to other methods

-For p = 2 the dual of the 2-norm flow diffusion problem is

o |
minimize EHBXH% — x"A + || Dx||,

-which is a regularized spectral problem, very similar £’;-regularized
PageRank.

-For p — o0 the dual of the co-norm flow diffusion problem is
minimize ||Bx||; — x'A + ||Dx]|

-which is a regularized min-cut problem, very similar to the so-called flow-
improve methods

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



Rounding

-Sort the dual variables in descending order
-Output the prefix set with smallest conductance.

-In practice we solve the dual of the p-norm flow problem

minimize —x'A + ||Dx||,
subject to: ||Bx||, <1
x>0

-S0 we have direct access to the dual variables

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



p-norm network flow diffusions - conductance guarantees

-Theorem - Let C be the target cluster with conductance ®(C), if A is

initialized inside C, and the input seed set sufficiently overlaps with C, then
the output A satisfies

®(A) < O (P(B)'~1P)

-Cheeger-type result for p = 2.

-Constant factor approximation when p — 00, similar to combinatorial
diffusions.
-omooth transition for general p values in between

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



p-norm network flow diffusions - algorithm

-Simple randomized coordinate descent

“Running time @(%( Ii\ )1—2/1910g ] )

- | A'| represents the magnitude of the initial mass.
-y Is the strong convexity parameter of the dual problem.

-€ 1s the required accuracy

-p = 2 gives the usual running time for spectral methods 5( A )
p — oo gives the usual running time for combinatorial methods O(| A |*/€)

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



p-norm network flow diffusions - summary

-There Is a trade-off between quality of output and running time

-I'he larger p Is the better the output with respect to conductance.
-However, the larger p is the more the running time for solving problem.

-In practice, small values of p € [2,8] gives the best of both worlds.

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.



Performance

-LFR synthetics model, basically a stochastic block model
-l IS a parameter that controls noise, the higner the more noise.
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| ocal to Global Applications:
Network Community Protiles, Node
embeddings, Graph Visualization, Semi-
Supervised Learning

(no theory &, preliminary work)



Network Community Profiles
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Node embeddings

-Goal: Represent a node with a low dimensional vector.

-We use node embeddings for graph visualization, semi-supervised learning
and graph partitioning.

Types of node embeddings
-Global embeddings

-Local embeddings, I.e., spectral and combinatorial



Global embeddings

_Compute the Laplacian matrix L =D — A
_Compute k non-trivial eigenvectors of L
_Stuck the eigenvectors as columns of a n X k matrix U.

-Each row of U is a vector representation (node embedding) of a node.



Local spectral embeddings

-Choose randomly /V seed sets

-For each seed set run a local spectral algorithm.

-Stuck eigenvectors as columns of a n X N matrix X.
_Compute k principal left singular vectors of X
-Stuck the singular vectors as columns of a n X k matrix U.

-Each row of U is a vector representation (node embedding) of a node.



Local flow embeddings

-Choose randomly /V seed sets

-For each seed set run a local flow algorithm

-Stuck eigenvectors as columns of a n X N matrix X.
_Compute k principal left singular vectors of X
-Stuck the singular vectors as columns of a n X k matrix U.

-Each row of U is a vector representation (node embedding) of a node.



Graph visualization - US highway network
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-Edges represent naturally funded highways, and nodes represent
Intersections.
-Mostly toy-graph for demonstration purposes



Graph visualization - global embeddings
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-Color shows true longitude

-Global embeddings seem to correlate with longitude

-But, compresses major regions of the northeastern US (Washington, New
York, Boston) as well as the Western US (Los Angeles, San Diego, Phoenix).



Graph visualization - local embeddings
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Local flow embeddings

-With global embeddings Western US (Los Angeles, San Diego, Phoenix) was

quite compressed.

-Local embeadings help In de-compressing the region.
-Local spectral and flow embeddings seem to be qualitatively different.



Main Galaxy Sample data

-Each node Is a galaxy
-Edges represent distance among galaxies

-The distance is determined by measuring the distance of the emission spectra
of two galaxies

-There are 517182 galaxies (nodes) and each galaxy has 4 neighbor galaxies
(edges)

Mapping the similarities of spectra: global and local approaches to sdss galaxies. The Astrophysical Journal. 2016.



Local spectral and flow embeddings - Main Galaxy Sample data
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Local spectral and flow embeddings - Main Galaxy Sample data
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-Structural differences in visualization also translate to clusters with smaller
conductance.



Semi-supervised learning

Problem

-Infer unknown labels for all nodes, when given a few nodes with known labels.

-We assume that the graph edges represent a high likelihood of sharing a
label.

Algorithm

-For each class, we randomly select a small subset of nodes, and we fix the
labels of these nodes as known.

-We then run a spectral or a flow method where this set of nodes is the
reference. This gives one spectral or tlow vector per class.

-For each unlabelled node we ook at the corresponding coordinate in the
vectors and we give it the [abel that corresponds to the class with the highest
value.



Semi-supervised learning
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INnfo about the data

publications about
INksS.

-PubMed Is a citation network. 19717 scientific

diabetes with 44338 citation

-By construction of the graph, articles about one

type of diabetes ci
more often.

e others about the same type



Software

LocalGraphClustering on GitHub St



Thank you!



