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@ Graph representations of entropy and information
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Entropy and information

Assume that X, Y have joint distribution fx y(x,y) on R%*%.

Classical definitions of entropy and mutual information Shannon (1948)

® Marginal (Shannon) entropy:

H(X) = —/fx(x)logfx(x)dx

® Joint entropy:
H(X,Y)=—- / fx,v (x, y)logfx v (x, y)dxdy
® Conditional entropy:
HIXIY) = = [ (e ylogfi (xly)ddy = H(X, ¥) = H(Y)

® Mutual information:

fxv (xly)

o) = H(X) — H(X|Y)

I(X,Y) = /fx v(x,y)log
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Entropy and information

Assume that X, Y have joint distribution fx y(x,y) on R%*%.

Classical definitions of entropy and mutual information Shannon (1948)

® Marginal (Shannon) entropy:
H(X) = —/fx(x)logfx(x)dx
® Joint entropy:
H(X,Y)=—- / fx,v (x, y)logfx v (x, y)dxdy
® Conditional entropy:
HIXIY) = = [ (e ylogfi (xly)ddy = H(X, ¥) = H(Y)

® Mutual information:

fxv (xly)
fx(x)

< the large-n limit of a certain graph over i.i.d. {(Xi, Yi)}/; from fx v.

I(X,Y) = /fx v(x,y)log dxdy = H(X) — H(X|Y)
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Rényi and Havrda-Charvat-Tsallis (HCT) entropies of order «

® Rényi-a entropy (Rényi (1961)) for o > 0:

1 a
T alog /]Rd f*(x)dx

® Rényi-a information divergence from f to g for a € [0, 1]:

Hu(f) =

Da(fllg) =

1 e 11—«
1log /]Rd f*(x)g “(x)dx,

P
Property: asa — 1

Ho(f) — —/f(x)logf(x)dx (Shannon entropy)

f(x)
g(x)

Da(fllg) — /f(X)IOg dx (KL divergence)
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Rényi and Havrda-Charvat-Tsallis (HCT) entropies of order «

® Rényi-a entropy (Rényi (1961)) for o > 0:

1 a
T alog /]Rd f*(x)dx

® Rényi-a information divergence from f to g for a € [0, 1]:

Hu(f) =

Da(fllg) =

1 e 11—«
1log /]Rd f*(x)g “(x)dx,

a—
Property: asa — 1

Ho(f) — —/f(x)logf(x)dx (Shannon entropy)

f(x)
g(x)

Da(fllg) — /f(X)IOg dx (KL divergence)

® HCT-« entropy (Havrda and Charvat (1967),Tsallis (1988))

Fia(F) = 1ia ( ACEE 1)
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k-nearest neighbor (kNN) graph

® n Euclidean points {X;}iL;, Xi € R T h
® v € (0,d) a parameter o
* kNN graph G = {V, E} . :
kNN _ . N
LWy = min L(V,E) . .
T EMSk Z &3]
T e€E
= > 2 X=Xl .
=1 JENK(X)) ,
® Ni(Xi) are the k-nearest neighbors of @4 e
Xi in X, — {X;} . A %W}}g, j
i ity i gxas’”w i
® Computational complexity is % Cry
O(knlogn) | Y N
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Minimal spanning tree (MST)

® MST is solution of the optimization

MST .

L7 (V) = min L,(V,E)
_ H LY
= ming > lesl

e;jEE

® MST spans all of the vertices V
without cycles

® MST has exactly n — 1 edges

® Computational complexity is O(n*logn)

100 samples

% &
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Friedman-Rafsky graph (FR)

MST over 100 labeled nodes

® Two labeled sample sets X}, YV
® Start with MST over V = X, U Vn,

LET(V) = min Ly(V,E)

= D11 e T

e; €E*

. XY
® FR graph is the set of edges {ej

® The length of FR graph is 5 Freenttaty sn
FR _ XY |y I
LRV = 3 1] e
eg{YegMST osl Q@é‘ﬁoo
R o . \
® [47(V) was proposed as a multivariate .
run length statistic to test if X, and ° ". .
Ym come from the same distribution DA

(Friedman and Rafsky, 1979) . e
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Shortest path (SP) through a graph

® Let G be a graph with m = |E| edges on n
vertices V

® 7(X;, XF) a path over G btwn points X
and Xg

w(Xp, Xp) = (X1, Xy, .., Xy, XF)

X, is neighbor on G of predecessor Xi;

and XI = X; XF:X,‘

ior I+1
® The shortest path is the solution to

Shortest path through 100 nades (kNNG). y=1

SP . T
LP(v) = min ST X — X7 .

X, X li+1 09 [ ° : 2
X F)XiGW(XhXF)

® Possible choices of G:

® kNN graph ost,,
® MST oalf o
® Complete graph 03

® Computational complexity is O(m+ nlogn)
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From local to global structure: virus strain genotyping in epidemiology

O O
A. Wagner, "A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin,”
Proc. Roval Soc. B. Mav 2014.
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Local vs global properties of Euclidean graphs

Let G = {X,, E} be a graph over X, with edges E.
Define L: G — R be a property of G, e.g., the sum of its edge weights.
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Local vs global properties of Euclidean graphs

Let G = {X,, E} be a graph over X, with edges E.

Define L: G — R be a property of G, e.g., the sum of its edge weights.
® [(X,) is a global property of G
® [(F)is a local property of G if F is a localized subset of X,

Certain global properties of G are stable with respect to local properties
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Local vs global properties of Euclidean graphs

Let G = {X,, E} be a graph over X, with edges E.

Define L: G — R be a property of G, e.g., the sum of its edge weights.
® [(X,) is a global property of G
® [(F)is a local property of G if F is a localized subset of X,

Certain global properties of G are stable with respect to local properties
= continuous and quasi-additive functionals L

1 4

[} o}

0.9
0. ° 0 fol ) ° &
8 5
071 © ) [o] q
e @ e %o
61— P~ P
0.5) © © o

b I N foo P
04 [0] fo) o

' P e, [P o |e
03} o ® g

,-. o]
0.2] °
o1 o] o |®
oY (0] o}
[ 0.2 04 06 08 1

Examples: sum of edges, sum of vertex degrees, degree distribution of kNN and
MST

Non-examples: length of k-point MST, lengths of shortest paths in kNN
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Continuous and quasi-additive graph functionals (Yukich [1988])

A global property L,(F) is a continuous quasi-additive graph functional if
® Translation invariance and homogeneity

VxeR?, L,(F+x) = L,(F), (translation invariance)
Ve>0, L,(cF) = c"Ly(F), (homogeneity)
® Null condition: L,(¢) = 0, where ¢ is the null set
® Subadditivity: There exists a constant C; with the following property: For
any uniform resolution 1/m-partition Q™

md

L(F) <m " SO Ly (ml(FN Q) — ) + Gm®
i=1
® Superadditivity: For same conditions as above, there exists a constant G,

d

L(F) = m™ 3 Ly(m[(F N Q) - ) — Gm* ™

i=1
® Continuity: There exists a constant G; such that for all finite subsets F
and G of [0,1]¢

IL,(FU G) = L,(F)| < G (card(G))@/*

J. Yukich, " Probability theory of classical Euclidean optimization problems,” Springer Lecture Notes in Mathematics, 1998.
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kNN and MST length functions converge to the HCT-a entropy

The following theorem holds for any continuous quasi-additive graph, e.g., kNN
and MST.

Theorem (Beardwood, Halton&Hammersley 1959, Steele 1997, Yukich 1998)

Let X, = {X1,...,Xn} be an i.i.d. realization from a Lebesgue density f
supported on compact subset of RY. If0 < v < d

n—o0o

lim LMSTAWN () /pd=0/d =g / Fx)@=7/ 9 g, (a.s.)

Alternatively, letting a = (d — v)/d,

1
l—«

(L (X)/n" —1) = Hal(f) (a.s.)

Steele, Probability theory and combinatorial optimization, SIAM 1997.
Beardwood and Halton and Hammersley, " The shortest path through many points,” Proc. Cambridge Philosophical Society 1959.

J. Yukich, " Probability theory of classical Euclidean optimization problems,” Springer Lecture Notes in Mathematics, 1998.
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FR length function converges to an information divergence measure

Let X = {Xi1,...,X,} and Y = {Y1,..., Y} be independent and i.i.d. in R
with pdfs fx and fy, respectively. Then

Theorem (Henze (1999), Berisha (2015), Sekeh (2019))
Let n, m converge to infinity in such a way that n/(n+m) = p, p € [0,1]. Then

n+m
2nm

1- LR uY) — Dy(f,f,)  (as.)

where D, is Henze-Penrose (HP) divergence

D, is an information divergence measure that gives a tight bound on Bayes
binary classification error.

N. Henze and M. Penrose, " On the multivariate runs test,” Ann. of Statistics, 1999.
V. Berisha and AH, " Empirical non-parametric estimation of the Fisher Information,” |IEEE Signal Processing Letters, 2015.

S. Sekeh, M. Noshad, K. Moon, and AH. " Convergence Rates for Empirical Estimation of Binary Classification Bounds.” Entropy, 2019.
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Application of HP divergence: a minibatch stopping rule (Noshad [2019])

Simulation: classification of 2 mean shifted 10 dim Gaussian densities

100 -
\\ w— True
‘\‘ = 4= Benchmark learner
N\ —o—HPLB
\
‘\ ——HP UB
Ly
.‘E' \,\ Adaboost
= S
= S
< N,
S =
1| .
ni: 10 \-"'-.._
5 Sl
- S~
5 e - “~
%s\s\t__ —
e o
= —

-2 I I L I I I L I I |
10
0 100 200 300 400 500 600 700 800 900 1000

Sample Size

M. Noshad, L. Xu and AH, "Learning to benchmark: determining best achievable misclassification error from trinaing data,”

arXiv:1909.07192, 2019.
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Shortest path between two points: uniform distribution

SP :
L3 (V) = min E | Xip — Xii]”
m(X;,XF)
Xiem(X,XF)
. Shortest path through 2000 nodes. y = 1 Shortest path through 2000 nodes. y = 2
% OQ20®° 0°8 Bogo B ° °ady 40
o R
8

Euclidean distance (y = 1) (Euclidean distance)® (v = 2)

17
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SP between two points: lensing effect of Gaussian distribution

sp .
L°(V) = min |Xi, — Xi|”
vy J+1 ]
(X, XF)
Xiem (X, XF)
Shortest path through 2000 nodes. y = 1 Shortest path through 2000 nodes. y = 2

150

1t
05F o

o °

of
050

b
15 . . . . . s , . . . . )

‘15 -1 0.5 0 05 1 15 T35 1 05 0 05 1 1.5

Euclidean (fy = ]_) (Euclidean)2 ("y = 2)
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Continuum limit of shortest path through complete graph

Let X = {Xi,...,Xs} bei.i.d. random vectors in R? with marginal pdf f
hiving support set S. Fix two points x; and x¢ in RY.

Define G as the complete graph spanning X’

Theorem (Hwang, Damelin and AH 2016)

Assume that inff(x) > 0 over a compact support set S with pd metric tensor
g. For vy > 1 the shortest path on G between any two points x;, xp € S satisfies

1
L3P (x) /e Cay inf /0 F(me) 9 g, 7)dt  (a.s.)

dist~ (X ,xF)

where the infimum is taken over all smooth curves 7 : [0,1] — R with mo = x
and w1y = xr and C(d,~) is a constant independent of f.

® S.-J. Hwang, S. Damelin, AH, "Shortest path through random points,” Annals of Applied Probability, Volume 26, Number 5 (2016),

2791-2823. (arXiv:1202.0045).
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Continuum limit of shortest path: ODE (Eikonal) variational form

Define
F(m, ) = f(m)* 79/ g (7, 7)

Then Thm. implies normalized shortest path length converges to integral /

1
LP(x)/n 0 s (w,7) = Cay inf/ F (e, 7ce)dt
T Jo

Eikonal form: For initial point x; € RY consider the distance function D, (x)
to any other point x # x;.

Then, for m = m(x;, x) and g(u, u) = ||u||?>, constant contours of integral
I = I(x) can be represented as propagating fronts of Dj,.

The distance function D is a viscosity solution of the Eikonal equation

N TR I A

o.w.

where W = f1=7/9 (the speed of fronts of D).

Eikonal equations can be solved efficiently by Fast Marching (Sethian, 1996)

over discretized domain S of f.
21
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Numerical illustration: shortest path computation

® Histogram data on (d — 1)-dimensional simplex Q  R?
d

Q=<xeR?:x,...,x4 >0, ZX,':].
i=1

e Equivalent linearly independent representation in hypertriangle S ¢ R~

d—1
S={xeR:x,...,xq_1 € [O,l],Zx,- <1

i=1

10 T T T T 10
08 8 vk}

T — . 06

04 NN - 0.4
/_‘_ \
0z | AR | 02
1 I| 1
| |
I {1 [
0.0 L ST L 0ok 2
0.0 02 04 06 08 10 0o 02 04 0.6 0.8 10

Truncated Gaussian f(x) on S C R? n = 500,000 realizations
29
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Numerical illustration: shortest path computation

® Domain S of distance function D discretized into m?~! cubic cells {G;}

® Distance function Dy, : S — R* computed by FM for an initial point

x € G

08 [

06 |

04|

02| F ]

YO

0.0 i { .f { i i ’i;\'h

0.0 02 0.4 06 g %

Distance function by FM (v =2, m

2

0.8 [

06 |

04l

0z

0.0

i}

= 80K)

0z 04 06 vk}

Shortest paths by FM

bl
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Comparison: Eikonal ODE vs combinatorial Dijkstra

Table: CPU times (secs) for Fast Marching (n = 500, 000)

cells m9—1 | 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000

2 006 | 012 | 017 | 026 | 032 | 037 | 045
3 016 | 028 | 043 | 065 | 075 | 092 | 1.12
4 0.27 0.7 099 | 1.44 | 192 | 223 | 3.26
5 0.69 1.2 2.03 | 298 | 3.33 | 466 | 5.36

Table: CPU times (secs) for Dijkstra

vertices n | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000
d=2 108 | 5.92 | 11.43 | 21.42 | 36.46 | 108.37 | 248.10
d=3 14 | 484 | 1118 | 20. | 3236 | 111.48 | 259.31
d=4 1.14 | 451 | 10.66 | 19.14 | 31.11 | 113.12 | 272.03
d=5 1.12 | 454 | 116 | 21.43 | 32.87 | 10257 | 247.6

Implementation: Python 3.6.1, Fast Marching from scikit-fmm 0.0.9, Dykstra from NetworkX

24
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Random graph representation of information
® Many information measures have random graph representations.

® Random graphs can induce novel measures of information divergence.

25
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Random graph representation of information
® Many information measures have random graph representations.

® Random graphs can induce novel measures of information divergence.
® Graph-based divergence representations can be used to represent MI.
® HP divergence can be transformed to a Ml measure (Sekeh [2019]) :

Mip(X, Y) = Dp(fx,v, fxfy)

® Thus obtain a direct graph estimator of dependency, w/o density estimation.
® HP dependency shares properties of Shannon Ml (Sekeh [2019]).

25
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Random graph representation of information
® Many information measures have random graph representations.
® Random graphs can induce novel measures of information divergence.
® Graph-based divergence representations can be used to represent MI.
® HP divergence can be transformed to a Ml measure (Sekeh [2019]) :
Miy(X,Y) = Dp(fx,y, fxfy)

® Thus obtain a direct graph estimator of dependency, w/o density estimation.
® HP dependency shares properties of Shannon Ml (Sekeh [2019]).

From local to global properties
® Random graph representations can elucidate interplay between local and
global properties.
® Continuous quasiadditive global properties are stable wrt local
perturbations: length of kNN, FR.
= Global continuum limit is additive integral function over local domains

25
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Random graph representation of information
® Many information measures have random graph representations.
® Random graphs can induce novel measures of information divergence.

® Graph-based divergence representations can be used to represent MI.
® HP divergence can be transformed to a Ml measure (Sekeh [2019]) :

Mip(X, Y) = Dp(fx,v, fxfy)

® Thus obtain a direct graph estimator of dependency, w/o density estimation.
® HP dependency shares properties of Shannon Ml (Sekeh [2019]).

From local to global properties

® Random graph representations can elucidate interplay between local and
global properties.

® Continuous quasiadditive global properties are stable wrt local
perturbations: length of kNN, FR.
= Global continuum limit is additive integral function over local domains
® Non-Archimedian deviation of shortest path quantifies multiscale
interaction
= Continuum limit of SP is the solution to a Eikonal ode

S. Sekeh and AH, " Geometric Estimation of Multivariate Dependency,” Entropy, 2019.
25
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© Graph convolutional network (GCN) classifers
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Graph convolutional network (GCN) classifiers

GCN: a recently introduced DNN for classifying graph properties (Kipf [2016]).
Can perform

® Local classification/interpolation: node label prediction

® Global classification: graph label prediction

GCN N
Input Graph Predictions
o e N
6 x(K —1) p - <
8.0, 5:‘@(, ; . ol o O
p Feature P ( Nonl "
O; I; - ‘E E“‘“’li :’f;’iﬂo‘u\ @ ’ :E: / 11“'0:‘ ‘Rill_‘l‘}:u ol . ‘\\":f*
1 2
H? =X = [x1,.... xn]T (ﬂ?—@— —® Yaon = softnmx(SH”"’“G)‘">)

Linear Transformation
"k gre®

Source: F Wu et al, " Simplifying graph convolutional networks,” ICLR 2019.

e S is graph kernel matrix that propagates node features
e O is matrix of weights that encodes node features

TN Kipf, M Welling, " Semi-supervised classification with graph convolutional networks,” ICLR 2017. arXiv preprint arXiv:1609.02907,

2016.

27
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Application: classification of metabolic pathways from molecular features

Carbohydratc
Local features

o,

Energy
Carbohydrate

Lipid

Nucleotide
Metabolites

Global features Terpenoids
MAACS string R
Aromaticity

Polarization Glycan

Lipophilicity

; Aumino Acids
Molecular weight

00000000000

Xenobiotics

A query molecule Metabolic Pathways

M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, A. Hero, “A deep learning architecture for metabolic pathway prediction,”

Bioinformatics, 2019.

28
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Proposed GCN architecture

1-radius O
subgraph
c od o oo o H
o 2 g
T O
OlH > R—CH,
/ O‘H O
_ >
R—CH, CH, ¢ RelU ReLU O
ic H
en MACCS
2
MolWt. > i
Embedding NumRings ‘ O
Layer J
Graph Graph Molecular Feedforward
Convolution Convolution Properties Neural Network

M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, A. Hero, “A deep learning architecture for metabolic pathway prediction,”

Bioinformatics, 2019.

20
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Performance comparisons on Kegg PPl database

Scores (%)

Method

Accuracy  Precision Recall
Hu eral. (2011) 94.64 77.97 67.83
kNN classifier 90.52+.81 56.25+3.2 57.99+2.8
Ensemble logistic 85.48+.61 23.68+1.6 18.30+1.5
regression
Independent RFs 97.58+.12 83.69+.78 83.63+.68

GCN + additional features 97.61+.12 91.61+.52 92.50+.44

M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, A. Hero, “A deep learning architecture for metabolic pathway prediction,”

Bioinformatics, 2019.

20
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Tuning the GCN

There is little understanding of the factors affecting GCN performance
Selecting the number of layers in the GCN is especially difficult

® Too few layers — ignore global graph topology — poor global sensitivity

® Too many layers — over-diffusion of local features — poor local sensitivity

Hidden layer Hidden layer
e N ( B
o o
) ° ) °
[ S e
o ° ° °
° °
Input ¢ e ® e Output
I's N » » s N
° > ° °
» ¢ RelU L —, RelLU >
° — —
. . —> o ° L) L S S 7 IR ) S
° ° J ° - °
° ® o ® e ° a
e ® o
\ - \ J
° °
° °
[ S ® o
. © .« ©
° o \
° Y ° °
\ J \ J

M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, A. Hero, “A deep learning architecture for metabolic pathway prediction,”

Bioinformatics, 2019.

21
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e Capacity of GCN for graph representation and classification

29
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Fundamental limits on GCN classification capacity

Theory for representational capacity of the GCN is just starting to appear

® Xu K, Hu W, Leskovec J, Jegelka S, "How powerful are graph neural
networks?,” ICLR 2019.

® Magner A, Baranwal M, AH, " The Power of Graph Convolutional
Networks to Distinguish Random Graph Models,” arXiv preprint
arXiv:1910.12954. 2019 Oct 28. .

This theory seeks to reveal factors that enable or disable accurate GCN
performance

Ultimate aim is to provide principles to guide reliable GCN design

272
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The power of GCNs to distinguish random graph models

Ingredients for our main result

® Graph G on n vertices are realizations drawn i.i.d. from a graphon W € W
Geometrize the space of graphons VW with a metric: cut-distance
Constrain distance ¢ between degree distributions of Wy and W4
Formulate K layer GCN as a test between Hy : G ~ Wy, vs H1 : G ~ W,
Mixing time characterization of random walks on graphon samples
Apply concentration inequalities to bound misclassification error

24
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The power of GCNs to distinguish random graph models

Ingredients for our main result

Graph G on n vertices are realizations drawn i.i.d. from a graphon W € W
Geometrize the space of graphons VW with a metric: cut-distance
Constrain distance ¢ between degree distributions of Wy and W4
Formulate K layer GCN as a test between Hy : G ~ Wy, vs H1 : G ~ W,
Mixing time characterization of random walks on graphon samples

Apply concentration inequalities to bound misclassification error

The following holds if the GCN has "nice” activation functions and bounded
weight matrices.

Theorem (Magner (2019) Theorem 1)

Assume that K > Dlogn, for some constant D possibly depending on Wy and
Wi. Assume the mean degree distributions of inputs Go ~ Wy and Gy ~ W,
are separated by a small distance < §. Then, with high probability the
corresponding K-th GCN layer outputs ACK) and ALK are indistinguishable,
ie.,

~ ~ 0 -
|0 — A9 < 2 (14 0(n %)

A. Magner, M. Baranwal, AH, " The power of graph convolutional networks to distingusih between random graph models,”

arXiv:1910.12954. 2019 Oct 28
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The power of GCNs to distinguish random graph models

Consider the case of noise-regularized GCN for which the output of each
neuron has additive uniform noise over [—€yes, €res].

Using Theorem 1, and concentration arguments 4+ Le Cam’'s method:

Theorem (Magner (2019) Theorem 2)

Assume that Dlogn < K < n'/>7% and that €.es > 2. Assume the mean
degree distributions of inputs Gy ~ Wy and G1 ~ W, are separated by a small
distance < 8. Then the probability of error of any test for distinguishing
between Wy and Wi based on the K-th GCN layer output is at least

5 n
1—
( 26resn)

A. Magner, M. Baranwal, AH, " The power of graph convolutional networks to distingusih between random graph models,”

arXiv:1910.12954. 2019 Oct 28
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The power of GCNs to distinguish random graph models

We obtain a converse to Theorems 1 and 2:

Theorem (Magner (2019) Theorem 3)

Let Wy and Wi be §-separated graphons. Then there exists a test the
distinguishes with probability 1 — o(1) between samples Go ~ Wy and Gy ~ W4
based on the output of the K-th GCN layer, with identity weight matrices and
activation functions, provided that K > Dlogn for sufficiently large D and

)
€res < by

l.e., a simple, linear GCN is sufficient for distinguishing d-separated graphons.
Recovers empirical results of (Wu [2018]).

F Wu, T ZHang, A de Souza, C Fifty, T Yu, KQ Weinberger, " Simplifying graph convolutional networks,” ICML 2019.
A. Magner, M. Baranwal, AH, " The power of graph convolutional networks to distinguish between random graph models,”

arXiv:1910.12954. 2019 Oct 28
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Example: Indistinguishable stochastic block models

We exhibit a concrete family of graphons that are
® well-separated from each other in cut distance and
® (O-separated in terms of degree distribution:
Consider 2-block SBM with density parameters P, = (p;, p>,q"). Define the
parameter set
P={P : (0,0,0) < P=P,+7-(1,1,-1) <(1,1,1)} (1)

and consider SBMs with parameters coming from P.

Theorem (Magner (2019) Theorem 4)

For any pair Wy, W1 parameterized by P, assume K > Dlogn as before. Then
with high probability the corresponding K-th GCN layer outputs H®*) and
AR are indistinguishable, i.e.,

”’:I(O,K) _ lfl(l,K)Hoo _ O(n—3/2+const)‘ (2)

An analogous error probability lower bound holds.
A. Magner, M. Baranwal, AH, " The power of graph convolutional networks to distinguish between random graph models,”

arXiv:1910.12954. 2019 Oct 28
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Elements of the proofs

Start with a linear GCN with identity weight matrices: the K-th GCN layer
outputs the embedding matrix

M* = A, (3)
where A is the normalized adjacency matrix of the input graph.

If K is close to the e-total variation mixing time of the random walk on G, then
the rows of A are close to the stationary distribution — a function of the vertex
degrees.

Mixing time is ©(log(n/¢€)) for graphons satisfying mild assumptions.

Several analytic details allow us to extend our analysis to a class of nice
activation functions and non-identity weight matrices.
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Remarks on GCN theory

® The problem of distinguishing random graph models from representations
of samples can be used as a canonical downstream task for
evaluating/comparing representation learning methods

® This is first result we know of that quantifies performance limitations of
GCN's over graph classes

® Theorems are tight for distinct SBM's having the same degree distribution
(Magner [2019], Thm 4).

® Characterization of dependence of D on Wi and W, could provide
guidelines for selecting K

® Qur theory is limited to dense graphs.

® Extensions to sparse graphs, e.g. graphex's, would be worthwhile next step

20
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Summary remarks

® Local and global information can be studied using random graphs.
® Random graphs can induce novel measures of information divergence.

® Graphon random graph models can enable sharp results on representation
and classification of graphs by neural networks.
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