

Communication Systems Laboratory (<u>http://www.ee.ucla.edu/~csl/</u>), Department of Electrical Engineering, University of California, Los Angeles

Overview

- Main result: Improved lower bound on maximum rate of variable-length feedback codes at short blocklengths
- Previous lower bound [Polyanskiy, Poor and Verdú, 2011]: stop feedback codes, left large gap to upper bound
- New approach: "active" feedback to confirm receiver's estimate
- Numerical results provided for BSC

VLF Codes

An (*l*, *M*, ϵ) variable-length feedback (VLF) code consists of

[Polyanskiy, Poor and Verdú, 2011]:

- Message $W \in \{1, 2, ..., M\}$
- Average blocklength *l*: $E[\tau] \le l$
- τ is a stopping time of the filtration $\sigma\{U, Y_1, Y_2, ..., \}$
- *U* is common randomness revealed to both Tx and Rx
- Encoder outputs $X_n = f_n(U, W, Y_1, Y_2, ..., Y_{n-1})$
- Memoryless channel $P(Y_i | X_1, ..., X_i) = P(Y_i | X_i)$
- Decoder's estimates $g_n(U, Y_1, ..., Y_n)$
- Decoder's final decision $\widehat{W} = g_{\tau}(U, Y_1, ..., Y_{\tau})$
- Average probability of error ϵ s.t. $P[\widehat{W} \neq W] \leq \epsilon$
- Code rate is (log M) / l

Stop-feedback

Stop-feedback VLF code:

- Tx ignores feedback except to learn when Rx stops transmission (decodes)
- Encoder outputs $X_n = f_n(U, W)$
- Also called **decision feedback** (ACK/NACK from Rx)

Finite-blocklength regime:

- Feedback improves the maximum rate at short blocklengths compared to no-feedback case. (Fig. 1)
- Large gap between lower (achievability) and upper (converse) bounds on rate.
- Best achievability result for DMCs based on stop-feedback codes – Doesn't consider what receiver knows!

[PPV'11]: Y. Polyanskiy, H. V. Poor, and S. Verdú, "Feedback in the non-asymptotic regime," IEEE Trans. Inf. Theory, 2011.

An Improved Lower Bound on Rate for Variable-length Codes with Active Feedback Adam R. Williamson and Richard D. Wesel

Stop-feedback Bound

Theorem: (Stop-feedback) Achievability [PPV'11, Thm. 3] For a scalar $\gamma > 0$, there exists an (*l*, *M*, ϵ) VLF code satisfying $l < F[\tau]$

$$F \leq (M - 1) \operatorname{P}[\overline{\tau} < \tau]$$

$$\tau = \inf\{n \ge 0: i(X^n; Y^n) \ge \gamma\},\$$

- $\overline{\tau} = \inf\{n \ge 0: i(\overline{X}^n; Y^n) \ge \gamma\}.$
- $i(X^n; Y^n)$ is the information density between codeword X^n and channel output *Y*^{*n*}.
- $i(\overline{X}^n; Y^n)$ is the information density between identicallydistributed codeword \overline{X}^n and channel output Y^n .
- Proof: Random coding argument.

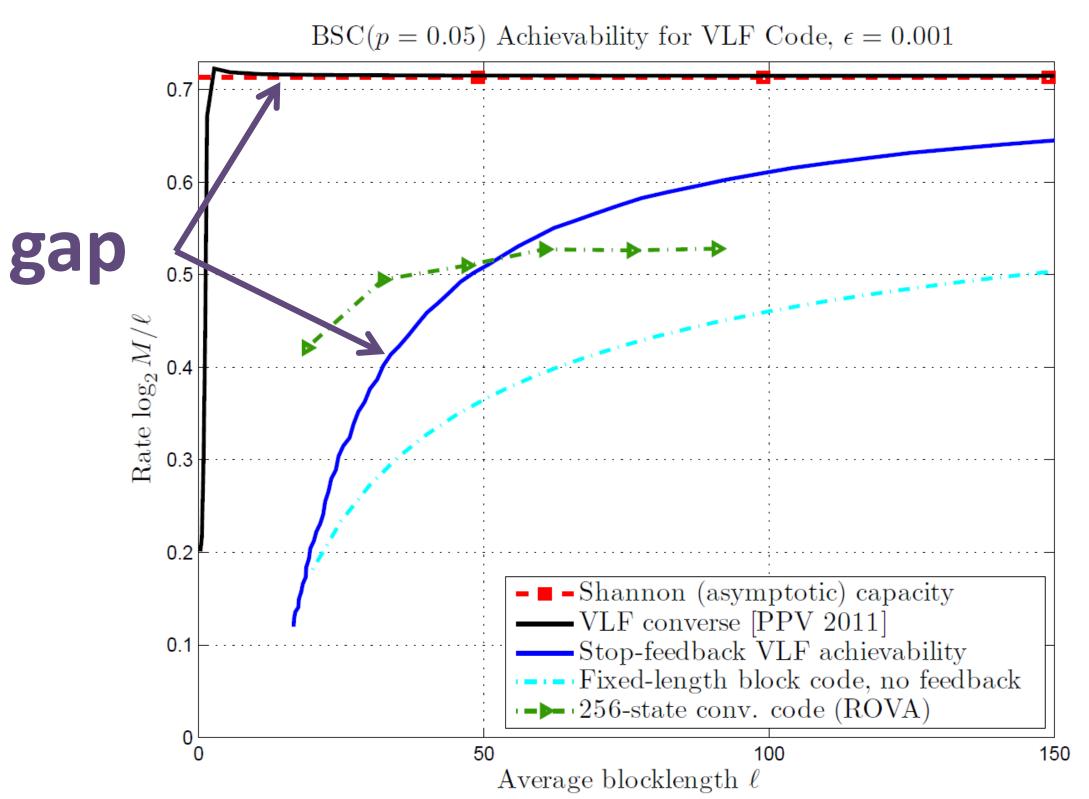


Fig. 1: Gap between upper and lower bounds on max. rate at short blocklengths. Feedback provides improvement vs. no-feedback. ROVA = Reliability Output Viterbi Algorithm [ISIT '13].

"Active" Feedback

- Transmitter uses feedback to refine receiver's tentative estimate.
- In general, $f_n(U, W, y^{n-1}) \neq f_n(U, W, \tilde{y}^{n-1})$, when $y^{n-1} \neq \tilde{y}^{n-1}$
- Channel coding is a specific case of active sequential **hypothesis testing** [Naghshvar and Javidi, 2012].
- Benefit of active feedback called adaptivity gain.
- Active feedback also called information feedback.

[ISIT '13]: A. R. Williamson, T.-Y. Chen, and R. D. Wesel, "Reliability-based error detection for feedback communication with low latency," IEEE Int. Symp. Inf. Theory, 2013. [Naghshvar and Javidi, 2012]: M. Naghshvar and T. Javidi, "Sequentiality and adaptivity gains in active hypothesis testing," arXiv, 2012.

This research was supported by National Science Foundation Grant CIF CCF 1162501.

Improved Lower Bound

Proposed scheme:

- Decoder feeds back estimate X^n once $i(X^n; Y^n) \ge \gamma$ for some X^n
- Tx uses N forward symbols to confirm (ACK) or deny (NACK) estimate
- Start over if Rx decodes NACK, stop when Rx decodes ACK
- $P[n \rightarrow a] = P\{NACK \text{ decoded as ACK}\}$
- $P[a \rightarrow n] = P{ACK decoded as NACK}$
- P(NACK) = P{Rx decodes NACK}

 - $\leq P[n \rightarrow n](M-1) P[\overline{\tau} \leq \tau] + P[a \rightarrow n]$

Theorem: Improved Achievability for Active Feedback

For a scalar $\gamma > 0$ and integer N > 0, there exists an (l, M, ϵ) VLF code satisfying

 $l \le \frac{\mathrm{E}[\tau] + N}{1 - \mathrm{P(NACK)}}$ $\epsilon \leq \frac{(M-1) P[\overline{\tau} \leq \tau] P[n \rightarrow a]}{1 - P(NACK)}$ • Numerical evaluation (Fig. 2) requires optimization over γ , N, and threshold N_t (threshold for skewed hypothesis test of

Proof: Similar to stop-feedback proof. confirmation block at Rx), for fixed M and ϵ .

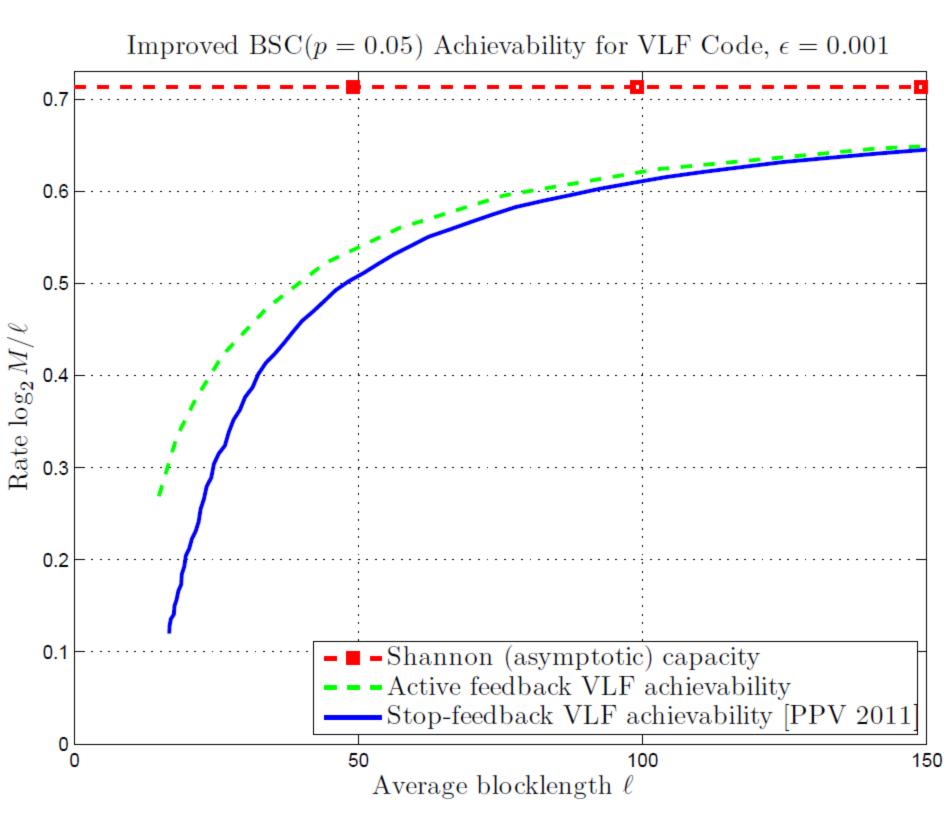


Fig. 2: Numerical evaluation of new "active" feedback lower bound.

Discussion

- Can do better by refining Rx estimate sequentially, not just at τ
- Starting over after NACK is costly in terms of latency
- Still need to find "good" codes
- There may be encoder complexity challenges

= $P[n \rightarrow n]P\{Rx \text{ est. wrong}\} + P[a \rightarrow n]P\{Rx \text{ est. correct}\}$