

# Genetic network complexity: weights matter more than topology

Joseph Henry Laboratories of Physics, Lewis-Sigler Institute for Integrative Genomics, Princeton University

## **1. Appropriate level of description?**

Can we understand genetic networks like we understand electronic circuits? Not every detail matters, but knowing only topology is insufficient. Goal: build a toy model where the appropriate level of description can be constructed explicitly. How much do microscopic quantitative details matter?

### 2. Model: weighted graphs and complexity



Genes: binary variables; interactions have variable strength. A gene is activated if its inputs exceed a threshold:

$$s_i = \operatorname{sgn}\left(\sum_{j \to i} J_{ij} s_j + H_i\right)$$

<u>Capacity</u> of a network: number of solutions (= number of cell types it can encode)

Each node implements a Boolean function from a *finite* set with a *non-arbitrary measure*.



For a given topology, we can enumerate all of its *non-equivalent* and *equiprobable* (!) realizations as a weighted graph.

Define <u>complexity</u> as the diversity of possible causal relations in the graph. Links are satisfied or frustrated. Define an *active* link as a link whose satisfied state is essential for equation (1) to hold. Each solution defines a binary sequence: the pattern of active links. Define diversity of a set of sequences as the length of the shortest path connecting all of them on a hypercube (traveling salesman).

How is complexity affected by the choice of topology vs. the choice of weights?

### Mikhail Tikhonov and William Bialek







(1)

(b, c, d)

$$\begin{array}{c}
9 \\
6 \\
4 \\
c
\end{array}^{b} \\
x = f(a)$$

## 3. Conclusions: weights matter more

- 1. Relative importance of weights vs. topology is of order 1.
- 2. Optimal weights outperform optimal topology (for 85% of topologies with N≤10)
- 3. Larger networks are not automatically more complex

### For an information-processing network:

- **1.** Topology and weights have effects of the same order.



Only relevant detail

Too microscopic



Capacity distributions over all choices of weights for 2 fixed topologies. Left/right: capacity determined by topology/weights. Actual data is in the middle.  $\theta$  defined as [mean<sub>topology</sub>( $\sigma_{weights}$ )]/[ $\sigma_{topology}$ (mean<sub>weights</sub>)],  $\sigma$  is standard deviation



Capacity distributions, both over weights and over topologies, are heavy-tailed. Typical capacity (random choice of weights) does not scale with network size.

### 2. High-complexity graphs operate in a non-generic parameter regime. 3. Evolving weights is a better strategy than changing topology / adding nodes