Compositional and Lightweight Dependent Type Inference for ML

He Zhu and Suresh Jagannathan
Computer Science Department of Purdue University

| Center for
Science of Information

NSF Science and Technology Center

Motivation Inference and Checking Refinement: Constraint Propagation

fun f g x =« fun :Ex =
. e

» Consider an open-source bit-vector library if x>=0 them = . if ¥=0 then

let r = g x in’r end ... let r = g x in r end .
- & “fun main h n = & il

* Procedure has complex invariants et p it g let r=fhn else f@n
’ r >= 0) end

in assert (r >= 0) end let p j feg in assert

@-&n)-l)/ b) < v&l@discov&r&d to be a pre-condition of Fetna q = compute X

procedure Unsare—bit: in s end ~ 8=1fpgq
in s end

Popeye, our tool, discovers this invariant only using counterexample guided

refinement Inference follows typing rules which are quite like tranditional typing rules g- {{ L } — {I/ > 0}}

* Bug detection

. <+— weakest precondition generation /
Subtype constraint built for this application leads to the verification condition: constraint propagation

fun blit {bits=bi, length=11} {bits=b2, length=12} guard cundit.inn requires _Dﬁ:mt valu.e.and (x=0Ar :) =>v=r) A((z20)As>0)=>v=s)=(v>0)
ofsl ofs2 n = number of bits to be copied be positive,

ifn<0 H ofst <0 I I ofsi +n > 1 and range of the copy to fit within source
oIS ofsd + n . . " .
and target vectors established by verification of main

then assert false path predicate found in T"

else unsafe blit bl ofsl b2 ofs2 n H i
‘access element out of bound refinement associated with
returns

provide an explicit counterexample
witness to the bug

{length (b1)=2, length (b2)=0, 11=60, ofs1=32, 12=0, ofs2=0, n=0}.

but unsafe_blit attempts to access the offset : <:
(say 0) in the target array before initiating

the copy loop leading to an array o 8 :{kl'} -» {kﬂ}

out-of-bounds exception

Counterexample path

Ref inemen'r and Dependen'l' Types e Negation of the verification condition is supplied to SMT BenChmar'kS

which may produces counterexample as satisfiable assignment

* Build counterexample paths from counterexamples

L1

“if th 1 Program |num_ref|num_cegar|prover_call|cegar_time|run_time

fun main b o 1L p Lhen ec e15e er fhnhn 3 4 35 0s| 0.014s
evaluates p to true

let T =f hn neg 15 20 230 0.004s 0.18s

in assert (r >= 0) end . i o max 10 11 175 0.005s 0.95s

A Verification condition: r-file 11 21 205/ 0.012s| 1.56s

(x>0Ar=Ry(z))=v=r) A((m(z>0)As>0)=>v=s)=(v>0) r-lock 10 18 108| 0.006s| 0.60s

r-lock-e 13 18 113 0.01s 0.68s

. Counterexample path: repeat-e 39 18 237 0.11s| 4.87s

... e list-zip 2 4 149 0.01s 1.558s

fun f g x = assume (x >> 0); let r = gx in r array-init 35 106 3617 0.03| 102.3s

translates to “assume p; e:" if VC assignment

-
[
=

el
% -

-
™
- -
-
-
=
= -
-
- o=
-

----- assuming counterexampleas r = -] and x = |

\;‘
—{v > 0}} Small benchmarks (< 100 LOC) but with complex control- and dataflow

Lots of HO procedures
to f

Non-trivial qualifiers that are not included in DSolve’s basic qualifier set

Extend standard types with predicates (sometimes called logical qualifiers) that refer to _ _ o
program variables, primitive functions and the special variable (V) Two buggy programs for which we can provide explicit witnesses

Well-typed program implies correctness
Mochi (HOMC) could not synthesize invariants for array-init

Refinement: WP Generation

fun f g x =
if x>=0 then
let r =g x in r end

e Tetr-thn Related Work

j in assert (r >= 0) end

q = compute x
s =1
I Type Inference insemd |
D dent Type Rul - - * Liquid Types (Rondon et.al [PLDI'08], Kawaguchi et.al [PLDI'09])
ependent Type Rules wp(assume(x > 0);let r = gz in),¢ > Q) = oo dcomm v oo
wa(assume(m > 0)’WJ(IEt r=grinrv= 0)) — * Higher-Order Program Model Checking (kobayashi et.al [PLDP'11)),
T)’Pe ChECking WJ(GSS’ILTTLB(:B Z 0)? WJ(T — g <, (Wp(b’ = v Z 0)))) First-order vs. higher-order verification engine
v D wp(assume(x > 0),wp(r =g z,r > 0)) * Dependent Types from Counterexamples (terauchi [popv10)
SMT Solver ?peciﬁcation W J(G,SS’IL?’TLE(JJ :_> 0)? Rg (IE) :_> 0) — (::ortcrete count%rexample paths vs.abstra'ct program slices
>0= R (a,:) > () * Verifying Functional Programs using Abstract Interpreters
Proof from L Z g - (hala et.al, [CAV’| 1)

Type Refinement

counterexample qg: {{t'rue} — {y > U}} Program analysis vs. program transformation

He Zhu, Suresh Jagannathan zhulO3@purdue.edu, sureshdcs.purdue.edu

