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Motivation Inference and Checking Refinement: Constraint Propagation
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Popeye, our tool, discovers this invariant only using counterexample guided

refinement Inference follows typing rules which are quite like tranditional typing rules g- {{ L } — {I/ > 0}}

* Bug detection

. . . . . . . . <+— weakest precondition generation /
Subtype constraint built for this application leads to the verification condition: constraint propagation
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witness to the bug

{length (b1)=2, length (b2)=0, 11=60, ofs1=32, 12=0, ofs2=0, n=0}.

but unsafe_blit attempts to access the offset : <:
(say 0) in the target array before initiating

the copy loop leading to an array o 8 :{kl'} -» {kﬂ}

out-of-bounds exception

Counterexample path

Ref inemen'r and Dependen'l' Types e Negation of the verification condition is supplied to SMT BenChmar'kS

which may produces counterexample as satisfiable assignment

* Build counterexample paths from counterexamples
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“if th 1 Program |num_ref|num_cegar|prover_call|cegar_time|run_time

fun main b o 1L p Lhen ec e15e er fhnhn 3 4 35 0s| 0.014s
evaluates p to true

let T =f hn neg 15 20 230 0.004s 0.18s

in assert (r >= 0) end . i o max 10 11 175 0.005s 0.95s

A Verification condition: r-file 11 21 205/  0.012s| 1.56s
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. Counterexample path: repeat-e 39 18 237 0.11s| 4.87s

... e list-zip 2 4 149 0.01s 1.558s

fun f g x = assume (x >> 0); let r = gx in r array-init 35 106 3617 0.03| 102.3s

translates to “assume p; e:" if VC assignment
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----- assuming counterexampleas r = -] and x = |

\;‘
—{v > 0}} Small benchmarks (< 100 LOC) but with complex control- and dataflow

Lots of HO procedures
to f

Non-trivial qualifiers that are not included in DSolve’s basic qualifier set

Extend standard types with predicates (sometimes called logical qualifiers) that refer to _ _ o
program variables, primitive functions and the special variable (V) Two buggy programs for which we can provide explicit witnesses

Well-typed program implies correctness
Mochi (HOMC) could not synthesize invariants for array-init

Refinement: WP Generation

fun f g x =
if x>=0 then
let r =g x in r end
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Type Refinement

counterexample qg: {{t'rue} — {y > U}} Program analysis vs. program transformation
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