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Motivation Problem

ENC DEC+

Problem: For fixed       and given CSIR, maximize     such thatn, �

Non-Asymptotic Bounds
Achievability: For the slow fading channel                  , fix the 
input       and the auxiliary output          satisfying for all 

then codes satisfying constraint     exist with 

where optimal threshold is 

Input (Ach.): uniform on power shell [5]
Input (Con.): codes on the power shell
Auxiliary output: 

With thresholds               for Ach. and                  for Con.

where
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Wireless networks with low-latency requirements are finding 
numerous applications; such as 
machine-to-machine (M2M) communications.

Finite blocklength results inherently 
depend upon the CDF of the channel 
mutual information random variable [1] 
and its statistics, specially the second order 
statistic known as the channel dispersion [2,3].

Define            as the solution to             where

- f(R) strictly increasing in R
- perturbation effect:  

Theorem: The finite blocklength coding rate of slow fading 
channels is given by                    

     Modified Mutual Information
The mutual information RV 

with non-i.i.d. input:
Fix                       and define the modified mutual information RV

 
Then 

For Achievability: use modified typicality                         
Then, the relevant outage probability is                          

Moreover, a change of measure & uniform bound technique 
takes care of the non-i.i.d. output distribution.

For Outer Bound: use another change of measure [4]
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Second-Order Analysis
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Converse: For the slow fading channel                  and for any 
auxiliary output          , every valid code satisfies     
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Discussion
- Approach extends to complex noise and general fading
- Outage-capacity as the infinite blocklength performance

and ours as the finite blocklength behavior

- Concurrent approximation of Wang et al. [6] 

not useful since lacks the exact coefficient of the ‘log(n)’ term
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