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Compression for Queries

Introduction

The fundamental problem of communication
is that of reproducing at one point either
exactly or approximately a message
selected at another point.

Claude E. Shannon, 1948
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In modern data processing, objective is often not reproduction of a
message

Today:

“Compression for Queries”

Compression – minimize space required to store database

Compressed data does not represent the source itself – but
rather “some useful information about the source”
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Introduction

Applications

Any database with many long sequences and a similarity measure:

Forensics: fingerprints

- FBI: “Integrated automated fingerprint identification system
(IAFIS)”: data on more than 104M individuals 1

Bioinformatics: DNA sequences

- GenBank: 200M sequences2

- Biozon: 100M records (DNA, proteins and more)3

1
Source: www.fbi.gov/about-us/cjis/fingerprints biometrics/iafis/iafis

2
Source: NIH, www.ncbi.nlm.nih.gov/genbank.

3
Source: Golan Yona, Dept. of Structural Biology, Stanford
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Introduction

Similarity Queries on Compressed Data

Today: detect similarity based on compressed data:

For each sequence x in the database, store only a very small
signature T (x)

Need to decide whether x and y are similar given only y,T (x)
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Introduction

Similarity Queries on Compressed Data: Remarks

Not classical compression:

- Original data not reproducible from compressed version
- Compressed DB does not replace the DB

Beneficial when when access to full DB is costly, e.g. if

- stored on slower media
- stored in a remote location
- full DB is used by many different users

Queries answered w.r.t. compressed (i.e. partial) data are not
always correct

- False positive (FP)
- False negatives (FN)
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Compression

X ∈ X n X̂ ∈ X̂ n

Encoder f Decoder g
i ∈ {1, ..., 2nR}

f : X n → {1, ..., 2nR}; g : {1, ..., 2nR} → X̂ n

Goal: Given f (x), generate x̂ which is similar to x.

(Nearly) Lossless Compression: Pr{X 6= X̂} → 0
Lossy Compression: E[d(X, X̂)] ≤ D
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Similarity Queries on Compressed Data

Similarity Detection

X ∈ X n

Y ∈ Yn

{yes, no}
“Encoder” T “Decoder” g

i ∈ {1, ..., 2nR}

T : X n → {1, ..., 2nR}; g : {1, ..., 2nR} × Yn → {yes, no}

Goal: Given y and T (x), determine whether x and y are
similar.

“x and y are similar” ⇔ d(x, y) ≤ D
A good scheme (T , g): the function g is correct “most of the
time”
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Similarity Queries on Compressed Data

What makes a scheme “good”?

The errors g(·, ·) can make:

False positives (FP): g(T (x), y) = yes when d(x, y) > D

False negative (FN): g(T (x), y) = no when d(x, y) ≤ D

We focus on case where Pr{FN} = 0.

A FN causes an undetected error

A FP does not incur an error per se, only increased
computation / communication

Schemes with Pr{FN} = 0 are said to be admissible.
⇒ no means no; and yes means maybe !

g : {1, ..., 2nR} × Yn → {no, maybe}
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Similarity Queries on Compressed Data

A “good” scheme = low probability for maybe

Goal: Control the false positive probability

Pr {g(T (X),Y) = maybe}
= Pr {g(T (X),Y) = maybe|d(X,Y) ≤ D}Pr{d(X,Y) ≤ D}
+ Pr {g(T (X),Y) = maybe|d(X,Y) > D}Pr{d(X,Y) > D}

= (1− Pr{FN}) Pr{d(X,Y) ≤ D}
+ Pr{FP}Pr{d(X,Y) > D}

= Pr{d(X,Y) ≤ D}+ Pr{FP}Pr{d(X,Y) > D}.

Pr{g(T (X),Y) = maybe} minimized ⇔ Pr{FP} minimized
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Similarity Queries on Compressed Data

Pr{g = maybe}: operational significance

x1
x2
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T (x) g(T (x), y) y

Pr{FP} = 6

12

Pr{g = maybe} = 10

16

Pr{g = maybe}: the fraction of sequences retrieved from database
⇒ a proxy for complexity of answering a query

We say that the query has been answered reliably if
Pr{g = maybe} is small.
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Similarity Queries on Compressed Data

Achievable Rates

X ∼ i.i.d. PX (·), Y ∼ i.i.d. PY (·).
D is given (fixed) similarity threshold

– i.e. x, y similar means d(x, y) ≤ D.

Definition

Rate R is said to be D-achievable if there exists a sequence of
rate-R admissible schemes

{
T (n), g (n)

}
, s.t.

lim
n→∞

Pr
{

g (n)
(

T (n)(X),Y
)

= maybe
}

= 0.

Why does this model & definition make sense?
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Similarity Queries on Compressed Data

Identification Rate

Definition

For a similarity threshold D, the identification rate RID(D) is the
infimum of D-achievable rates. That is,

RID(D) , inf{R : R is D-achievable}.

In other words, RID(D) is a fundamental limit. It is the degree to
which we can compress the data, while retaining the ability to
reliably answer similarity queries.
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Similarity Queries on Compressed Data

Identification Exponent

If R > RID(D), then Pr{g = maybe} can be made arbitrarily small
with n. How fast? (i.e., how precisely can we control the
false-positive probability?)

Definition

Fix R > RID(D). The identification exponent is defined as

EID(R) , lim sup
n→∞

−
1

n
log Pr

{
g (n)

(
T (n)(X),Y

)
= maybe

}
g (n),T (n): optimal schemes at rate R and length n.

Can also pursue other directions

e.g., finite blocklength bounds
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Quadratic-Gaussian

The Quadratic-Gaussian case

Quadratic distortion: d(x, y) , 1
n‖x− y‖2

Gaussian source: X ∼ N(0, Iσ2), Y ∼ N(0, Iσ2); X,Y
independent.
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Quadratic-Gaussian

QG: the Identification Rate

Theorem (Ingber, Courtade, Weissman, DCC 2013)

Suppose X ∼ N(0, Iσ2), Y ∼ N(0, Iσ2); X,Y independent. Then

RID(D) =

 log

(
1

1− D
2σ2

)
for D < 2σ2

∞ for D ≥ 2σ2.
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Quadratic-Gaussian

Quadratic-Gaussian Case: Discussion

RID(D) =

 log

(
1

1− D
2σ2

)
for D < 2σ2

∞ for D ≥ 2σ2.

If D > 2σ2,

⇒ X and Y are naturally similar! [i.e. d(X,Y) ≤ D w.h.p.]
⇒ RID(D) =∞,

If D → 0, then asking “are x, y similar?” is like asking
whether x = y, so very little information is required to rule
out most of the x’s

Similarity to classic rate distortion:

R(D) =

{
1
2

log
(
σ2

D

)
for D < σ2

0 for D ≥ σ2.
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Quadratic-Gaussian

Identification Rate vs Rate-Distortion
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Figure: The rate distortion function R(D) and the identification rate
RID(D) of a Gaussian source with variance σ2.
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Quadratic-Gaussian

QG Identification Exponent

Theorem (Ingber, Courtade, Weissman, DCC 2013)

Suppose X ∼ N(0, Iσ2), Y ∼ N(0, Iσ2); X,Y independent.

Then for R > RID(D),

EID(R) =

min
ρ∈(0,1]

2EZ (ρ)− log sin min

[
sin−1(2−R) + cos−1 ρ−

D
2σ2

ρ
, π2

]

where EZ (ρ) , 1
ln 2

[ρ
2 −

1
2 −

1
2 ln ρ

]
.
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Quadratic-Gaussian

QG Identification Exponent: Discussion

EID(R) = min
ρ∈(0,1]

2EZ (ρ)− log sin min

[
sin−1(2−R ) + cos−1 ρ−

D
2σ2

ρ
, π

2

]

Only scalar minimization w.r.t. ρ ⇒ easily computed

EID(RID(D)) = 0, as expected

limR→∞ EID(R) is given by the exponential decay factor of
the event {d(X,Y) ≤ D}.
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Quadratic-Gaussian

EID(R) for RID(D) = 2 bits/sym
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Quadratic-Gaussian

Different Variance

Suppose X ∼ N(0, Iσ2
X ), Y ∼ N(0, Iσ2

Y ); X,Y independent. Then

Theorem

RID(D, σ2
X , σ

2
Y ) =

{
log 2σXσY

σ2
X

+σ2
Y
−D

for D < σ2
X + σ2

Y

∞ for D ≥ σ2
X + σ2

Y .

Theorem

For R > RID(D, σ2
X , σ

2
Y ),

EID(R) = min
ρX ,ρY>0

EZ (ρX ) + EZ (ρY )

− log sin min

[
sin−1(2−R ) + cos−1 ρXσ

2
X + ρY σ

2
Y − D

2σXσY
√
ρXρY

, π
2

]
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, π
2

]
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General Sources: Achievable Rate

Theorem

X and Y independent, ∼ i.i.d. PX , finite second moment.
Then

RID(D) ≤ inf
PX̂ |X

I (X ; X̂ )

inf is w.r.t. all test channels PX̂ |X satisfying√
EPX⊗PX̂

(X − X̂ )2 ≥
√

EPX ,X̂
(X − X̂ )2 +

√
D
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General Sources: About the Result

Works for any d(·, ·) that satisfies the triangle inequality

A version exists for general d(·, ·)
Easily extended to different PX ,PY

Similar in spirit to [Ahlswede, Yang, Zhang ’93]
- study a related problem
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Gaussian as an Extreme Case

Classical lossy source coding: among all sources with the same
variance, the Gaussian is the hardest to compress.

In our case:

Theorem

If X is a random variable with finite variance σ2, then

RID(D) ≤ log

(
1

1− D
2σ2

)
,

i.e. a Gaussian source X requires the largest identification rate for
a given variance.
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Gaussian as an Extreme Case: Proof #1

Take a distribution PX (assume E [X ] = 0). Then RID(D) ≤ infP
X̂|X

I (X ; X̂ ),

where inf is w.r.t. PX̂ |X s.t.
√

EPX⊗P
X̂

(X − X̂ )2 ≥
√

EP
X,X̂

(X − X̂ )2 +
√
D.

Choose a channel PX̂ |X : X̂ = ρX + Z ; Z ∼ N(0, σ2
Z ), ind. of X , and

ρ =
(4σ2 − D)

(2σ2)
; σ2

Z =
(4σ2 − D)(2σ2 − D)2

4σ2D
.

Constraints on PX̂ |X are satisfied.

VAR[X̂ ] = ρ2σ2 + σ2
Z ⇒

I (X ; X̂ ) = h(X̂ )− h(X̂ |X ) ≤ 1

2
log

ρ2σ2 + σ2
Z

σ2
Z

= log
1

1− D/(2σ2)

[since Gaussian maximizes diff. entropy for a given variance]
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A Universal Scheme [+ Proof #2]

A scheme, that for any PX , attains RID of a Gaussian:

Assume n = 2`. Let
X = [X(1),X(2), . . . ,X(n)].

Now define

[X̃(1), X̃(2), . . . , X̃(n)] = [X(1),X(2), . . . ,X(n)]× H`

H`: a Hadamard matrix of order n = 2`. Do the same with Ỹ(i).

As n grows, the elements of each X̃(i) become Gaussian (CLT)

The columns of X remain independent!

Apply a length-n Gaussian scheme on each X̃(i).

Union bound → vanishing Pr{g = maybe}!

More than just another proof – this provides a scheme which is minimax
optimal w.r.t. all sources with variance σ2.
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As n grows, the elements of each X̃(i) become Gaussian (CLT)

The columns of X remain independent!

Apply a length-n Gaussian scheme on each X̃(i).

Union bound → vanishing Pr{g = maybe}!

More than just another proof – this provides a scheme which is minimax
optimal w.r.t. all sources with variance σ2.



Compression for Queries

Similarity Queries on Compressed Data

Gaussian as an Extreme Case

A Universal Scheme [+ Proof #2]

A scheme, that for any PX , attains RID of a Gaussian:

Assume n = 2`. Let
X = [X(1),X(2), . . . ,X(n)].

Now define

[X̃(1), X̃(2), . . . , X̃(n)] = [X(1),X(2), . . . ,X(n)]× H`

H`: a Hadamard matrix of order n = 2`. Do the same with Ỹ(i).
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The Symmetric Binary-Hamming case

Suppose X,Y ∼ Ber( 1
2 ) and distance is measured under Hamming

distortion

Theorem

RID(D) = 1− h
(

1
2 − D

)
= D2 · 2 log e + o(D2)

h(·): binary entropy function

Classic rate distortion: R(D) = 1− h(D)
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General Sources under Hamming Distortion

Theorem

If X,Y are both drawn i.i.d. according to PX and similarity is
measured under Hamming loss,

RID(D) ≥ D2 · 2 log e.

For PX = Ber( 1
2 ), recall RID(D) = D2 · 2 log e + o(D2).

⇒ Ber( 1
2 ) is nearly “easiest” to compress (in interesting

regime of small D) of all sources when distortion measured
under Hamming loss.

Stark contrast to Quadratic-Gaussian setting!
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Towards a general RID(D):

So far, we saw several examples:

Quadratic-Gaussian

Quadratic-general

Symmetric Binary-Hamming

General DMS & Hamming

DMS (results depend on an aux. RV with unbounded card.)

Why no general solution?
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Identification schemes as Quantizers

Size of quantization cell ∝ Pr(T (X) = i) ≈ 2−nR (symmetry)

Expanded quantization cells: {y : d(x, y) ≤ D for some x in cell}

Pr(maybe) ∝ size of expanded cell
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Identification schemes as Quantizers

Size of quantization cell ∝ Pr(T (X) = i) ≈ 2−nR (symmetry)

Expanded quantization cells: {y : d(x, y) ≤ D for some x in cell}

Pr(maybe) ∝ size (i.e., measure) of expanded cell



Compression for Queries

Isoperimetric Inequalities

Identification schemes as Quantizers

Toward a converse:

Need to minimize size of expanded cell, for a given size of base cell

A set A, its expansion ΓD(A)

What set A minimizes |ΓD(A)| for a fixed |A|?

⇒ an Isoperimetric Inequality!
What domain? The typical set!

Where the probability is uniform

Contains most of the probability mass
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Different Isoperimetric Inequalities

Isoperimetric Inequality in R2, Euclidean distance

|ΓD(A)| minimized when A is a sphere
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Different Isoperimetric Inequalities

Domain d(·, ·) Minimizer When Converse for

Rn Euclidean n-sphere late 1800’s –

n-dim. spherical Euclidean/ Spherical cap Levy ’51 Quadratic-Gaussian
shell Geodesic

Binary Hamming Hamming ball Harper ’66 Symmetric
hypercube Binary-Hamming

r -sets Hamming restricted – General
Hamming ball ? Binary-Hamming

Type class general cond. type class – DMS and
(“V -shell”)? general d(·, ·)

⇒ an isoperimetric inequality implies a converse

Might be too much to ask for

But known in several special cases...
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Compression for similarity queries

Compression for purpose of answering queries reliably, rather
than reproducing data

Reliability , vanishing probability of false positive, zero
probability of false negative

Quantities of interest: Identification rate and exponent

Complete solution for quadratic-Gaussian, symmetric
binary-Hamming
Achievability result for general sources, similarity metrics
“Universal” lower bound for Hamming loss
A matching converse: implied by an appropriate isoperimetric
inequality
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Theory

Close the gap in the general case
Extensions: X,Y non-i.i.d., but satisfying sparsity constraints

Applications:

Quadratic-Gaussian: spherical codes, lattices, wrapping
Symmetric Binary-Hamming: LDGM codes (already working
on this...)
Bioinformatics (with Golan Yona, Stanford)
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