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The brain is gigantic 

• The human brain has ~100 billion neurons 
connected by ~100 trillion synapses 

• Multiple levels of organization 

 



But our data is only “Big” 

• Electrophysiology experiments can record from 
~100 neurons simultaneously 

• fMRI experiments we can record from ~90,000 
voxels of about 20 mm3 

• There are over 2,000,000 neurons per voxel 



The visual brain 



System identification and 
neuroscience 

• Model each neuron based on relationship between 
stimulus and response 

• Evaluate models based on their ability to predict 
responses to novel stimuli 



Why system identification  
in visual cortex is hard 

• Non-linear 

• High dimensional 

• Interpretability is important! 
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Linearized regression 
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Movie reconstruction from  
fMRI data 

Nishimoto S, et al. Curr Biol. 2011 

Oct 11;21(19):1641-6 



Van Essen DC, 
Gallant JL. 
Neuron. 1994 
Jul;13(1):1-10. 



Tuning in V4 



We need big data! 

• V4 receptive fields are moderately large 

• Potential stimulus space is very large 

• Natural images span the relevant space 

• Response is highly nonlinear 



How to get big data 

• Implantable electrodes allow us to record from the 
same cell over many days 

• We used over 1 million frames of natural movies, 
the largest ever stimulus set in V4 

 



General nonlinear modeling 

• The Volterra Series: 

 

 

 

• Can control model flexibility by order choice 

• Parameter space grows quickly with order 
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The scale of the problem 

• If we have 1000 pixels 

• 2nd Order: 500,000+ coefficients 

• 3rd Order: 160 million+ coefficients 

• 4th Order: 40 billion+ coefficients 

 

• But we actually have about 196,608 pixels… 

• 2nd Order: 19 billion+ coefficients 

• 3rd Order: 1.2 quadrillion+ coefficients 

• 4th Order: 62 quintillion+ coefficients 

 Pixels 
1.2x1015 



Taming dimensionality 
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Kernel regression 

For all i,j =1:n in training data 

Calculate weights for kernel regression model 

Use weights to make predictions for new x 

Kernel function equivalent to dot product in 
feature space  
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The Inhomogeneous  
Polynomial Kernel 

2nd Order IHP: 

Implicitly 
Maps to 
feature space 
containing all 
first and 
second order 
terms 



Neural networks as kernel 
machines 

Input Hidden 
Units 

Output In a standard NN: 

From NN perspective, kernel 
regression with a tanh kernel 
function is equivalent to a NN with 
hidden units = training samples 
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Stochastic gradient boosting 

Volterra Space Error Surface 
Data 



Prediction performance by 
model order 



Color constancy in V4 



V4 Tuning for Color 

Kusunoki M et al. J Neurophysiol 2006;95:3047-3059 



Color Tuning of V4 Cells 

First Order Color 
Coefficients 



V4 tuning to curvature 

Pasupathy A , and Connor C E J 

Neurophysiol 2001;86:2505-2519 



V4 tuning to Non-Cartesian 
Gratings 

Gallant JL, Connor CE, Rakshit S, Lewis JW, Van Essen DC. 

J Neurophysiol. 1996 Oct;76(4):2718-39. 



Eigenvectors of second order V4 
receptive field model 



Eigenvectors of second order V4 
receptive field model 



Shape tuning of a V4 cell’s 
Volterra model 



Shape tuning of a V4 cell’s 
Volterra model 



Embracing the Complexity 

• Demonstrated a way to make this big problem 
tractable 

• Shown many reported features of V4 tuning can 
exist in a single cell 

• Interpretation of large models is still a major 
problem 

• Need tensor libraries that exploit symmetry to 
decompose large models 



Thank you! 



V4 High Response Movie Frames 



Stochastic Gradient Boosted 
IPKNs 

• Use IPKNs as the weak learners 

• Fit to sample of data using backprop w/ a stopping set  

• Perform line search to determine step size that minimizes 
error on sample 

• Multiply step size by learning rate and update function 

 

• Ensemble is equivalent to a single Volterra model! 

 



Some Important 
Unanswered Questions 

• What information are our models missing in V2, V4 and 
beyond? 

• Do we need nonlinear combinations of basis functions? 

• Can we derive new basis functions? 



Extracting Coefficients from 
Model 

• Create a design matrix or the desired order of 
interactions from the support vectors/input 
weights 

• Multiply by the output weights and weight by 
correction factor 

• Extract coefficients from each iteration’s network, 
weight by step size and sum to get final set of 
coefficients 



Feature Spaces 
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Constructing a Semantic Space 
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Semantic Decoding 



Flattening the Brain 



 
Visualizing Semantic Space 
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