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The brain is gigantic

* The human brain has ~100 billion neurons
connected by ~100 trillion synapses

* Multiple levels of organization

Cottical
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But our data is only "Big”

* Electrophysiology experiments can record from
~100 neurons simultaneously

* fMRI experiments we can record from ~90,000
voxels of about 20 mm3

* There are over 2,000,000 neurons per voxel
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System identification and
neuroscience
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* Model each neuron based on relationship between
stimulus and response

* Evaluate models based on their ability to predict
responses to novel stimuli




Why system identification
in visual cortex is hard

* Non-linear
* High dimensional

* Interpretability is important!
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Linearized regression

Nonlinear Feature
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Feature spaces

Stimuli Model neuron/voxel Responses

Feature Mapping Linear Weighting

Nonlinearity




Movie reconstruction from
fMRI| data

Clip reconstructed
from brain activity

Presented clip

Nishimoto S, et al. Curr Biol. 2011
Oct 11;21(19):1641-6
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Tuning Iin V4




We need big data!

* V4 receptive fields are moderately large

Potential stimulus space is very large
* Natural images span the relevant space

* Response is highly nonlinear



How to get big data

* Implantable electrodes allow us to record from the
same cell over many days

* We used over 1 million frames of natural movies,
the largest ever stimulus set in V4

V4 Cell Fingerprint PSTH on Nine Days

4
05/23
35 05/24
——05/25
3 ——05/27
——05/28
——05/29
225
s ——05/30
T ——— 05/31
D 2
o —— 06/01
w
Q
A
&5 ’
]
l]
‘I | I ﬂ ‘ \' l j }
- . | {ll l | \' d
I |
| i il | | ] \ b |l A
1 dm A T l\ (LA S0 A oA Ly 1 ”i 'I|
0 Gl I A AL 4 " S L UL i P A
0 ) 100 150 200 250 300 350 400 450

Frame Number



General nonlinear modeling

Xl X2
* The Volterra Series: ..
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* Can control model flexibility by order choice

* Parameter space grows quickly with order
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The scale of the problem

* If we have 1000 pixels
 2"d Order: 500,000+ coefficients
¢ 3'90rder: 160 million+ coefficients

* 4t Order: 40 billion+ coefficients

* But we actually have about 196,608 pixels...
 2nd Order: 19 billion+ coefficients
* 37 Order: 1.2 quadrillion+ coefficients

* 4" Order: 62 quintillion+ coefficients
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Taming dimensionality
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Kernel regression

K:k(xl,xf) Foralli,j =1:n in training data
—1
a=K V Calculate weights for kernel regression model

Use weights to make predictions for new x

V(6)= 2 ak(x,x)

y(x)= 2,0, (4(x), 6(x))

Kernel function equivalent to dot product in
feature space




The Inhomogeneous
Polynomial Kernel
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Neural networks as kernel
MEIIES

Input Hidden Output In a standard NN:

i k(x,x")=tanh(x-x")

y(x) = Y ak(x,x')

From NN perspective, kernel
regression with a tanh kernel

X function is equivalent to a NN with
08 hidden units = training samples




Stochastic gradient boosting

Data




Prediction performance by
model order
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Color constancy inVy




V4 Tuning for Color
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Color Tuning of V4 Cells
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V4 tuning to curvature
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V4 tuning to Non-Cartesian
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Eigenvectors of second order V4
receptive field model
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Eigenvectors of second order V4

receptive field model
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Shape tuning of a V4 cell’s
Volterra model
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Shape tuning of a V4 cell’s

Volterra model
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Embracing the Complexity

* Demonstrated a way to make this big problem
tractable

* Shown many reported features of V4 tuning can
exist in a single cell

* Interpretation of large models is still a major
problem

* Need tensor libraries that exploit symmetry to
decompose large models



Thank you!
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V4 High Response Movie Frames




Stochastic Gradient Boosted
IPKNSs

Use IPKNs as the weak learners

Fit to sample of data using backprop w/ a stopping set

Perform line search to determine step size that minimizes
error on sample

Multiply step size by learning rate and update function

Ensemble is equivalent to a single Volterra model!




Some Important
Unanswered Questions

* What information are our models missing in V2, V4 and
beyond?

* Do we need nonlinear combinations of basis functions?

 Can we derive new basis functions?




Extracting Coefficients from
Model

* Create a design matrix or the desired order of
interactions from the support vectors/input
weights

* Multiply by the output weights and weight by
correction factor

* Extract coefficients from each iteration’s network,
weight by step size and sum to get final set of
coefficients
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Feature Spaces
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Constructing a Semantic Space
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Semantic Decoding
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Flattening the Brain
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