Network Coding Teaching Module

A. Sprintson

Department of Electrical and Computer Engineering
Texas A&M

Center for Science of Information
Faculty Teaching Workshop
Network Coding Paradigm

- Information flow vs. commodity flow

Replication
- b₁ → b₁

Encoding
- b₁ → b₁
- b₁ + b₂

Replication
- b₁ → b₁

Encoding
- b₁ → b₁
- b₁ + b₂
Physical layer network coding

\[y_r = x_1 + x_2 + z \]

Broadcast phase

\[y_1 = x_r + z_1 \]
\[y_2 = x_r + z_2 \]

MAC phase
Lattice Codes

- Lattice codewords are scaled
- Channel adds a noise
Random i.i.d. codes are not good for computation
Structured codes outperform random codes.

Picture courtesy to B. Nazer
Index Coding Problem

- Option 1: transmit four uncoded packets
- Option 2: mix packets to take advantage of available side information

Problem Description:

Y. Birk and T. Kol, “Coding-on-demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to caching clients,” INFOCOM 98.
All links have an infinite capacity except for the bottleneck link

H. Maleki, V. Cadambe, S. Jafar “Index Coding- An Interference Alignment Perspective.”
Impact of field size

- There exists a family of graphs such that
 - $\minrk_2(G) \geq n^{1-\epsilon}$
 - $\minrk_p(G) \leq n^\epsilon$

- Using Ramsey graphs for the construction.

N. Alon, The Shannon capacity of a union
Minimum Rank Problem

- Given a matrix
 - Non-zero diagonal
 - Do-not cares
 - All other entries are zeros
- Minimize the rank of the matrix

\[A_G = \begin{bmatrix}
1 & X & 0 & 0 \\
X & 1 & X & 0 \\
0 & X & 1 & X \\
0 & 0 & X & 1 \\
\end{bmatrix} \]
Error-correcting codes

- Our case: constraints on the code construction
 - Due to the side information available at the clients
- Random code works with high probability
 - Hard to check since finding a minimum distance is an NP-hard problem

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

\(n \)

OPT
Codes for Distributed Storage

- Special class of distributed Storage codes
- Optimally trade-off storage space for repair bandwidth
Network Coding and Related Areas

- Combinatorics
- Network Coding
- Matroid Theory
- Interference alignment
- Applications
- Random graphs
Developed module

1. Provide a comprehensive survey of discoveries and insights gained from years of intensive research.
2. Discuss open problems and present new exciting opportunities in coding research and applications.
3. Target: advanced undergraduate and graduate level courses.
4. Can be used for independent study and massive online courses.
Topics covered

1. Introduction (two lectures);
2. Mathematical foundations, coding advantage, diversity coding (four lectures);
3. Polynomial and randomized algorithms for network code construction (four lectures);
4. Coding complexity (two lectures);
5. Network coding applications in network security and reliability (two lectures);
6. Wireless network coding (including the index coding problem) (four lectures);
7. Applications for network storage (two lectures);
8. Conclusions and future directions (two lectures).
Delivery

1. Series of short videos - around 20 minutes each
2. Screencast, using Wacom tablet (similar to Khan academy)
3. Accompanied lecture notes in pdf format
4. Will be used in the graduate level class taught in Spring 2015
Bring students into direct contact with mathematical professionals in an informal setting

More than 60 students grades 5-8 attended the circle in Spring 2014

Foster a passion for mathematics.

90-minute meetings most Saturday afternoons featuring presentations/activities by faculty.

Each circle starts with an unstructured activity, such as mathematical games (e.g. Set or Gardner’s Eluesis), puzzles, or building toys (e.g. zometools or polydrons).