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Lossy code: f : An !→ {1, . . . ,M} and c : {1, . . . ,M} !→ Bn.

Distortion measure: d : An × Bn !→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn
Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [?][?]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +

√
V (d)

n
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(
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)

• d-tilted information:

X(x, d) = log
dPXY!

d(PX × PY!)
(x; y) + λ!d(x, y)− λ!d for P !

Y-a.e. y

= log
1

E [exp{λ!d− λ!d(x,Y!)}] (E is wrt unconditional P !
Y)

– Y! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [?]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
n
∑n

i=1 1{xi )= yi}

• d-tilted information: X(x, d) = log
1

PX(x)
− h(d)

• V (d) = Var
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log
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= p(1− p) log2
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Special case: equiprobable binary source

• Zero rate dispersion: V (d) = 0

•R(n, d, ε) = 1− h(d) +
1

2

log2 n

n
+O

(
1

n

)
bits

• Converse and achievability bounds are particularly simple:

1−M2−n
*nd+∑

j=0

(
n

j

)
≤ ε ≤



1− 2−n
*nd+∑

j=0

(
n

j

)


M

Fixed-length lossy compression in the finite blocklength regime
Victoria Kostina and Sergio Verdú
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Main results
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Lossy code: f : An #→ {1, . . . ,M} and c : {1, . . . ,M} #→ Bn.

Distortion measure: d : An × Bn #→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn
Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kor73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results
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Distortion measure: d : An × Bn '→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε
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Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
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{P [X(X, d) ≥ logM + γ]− exp{−γ}}
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V (d) = Var [X(X, d)]

• Counterpart in channel coding: [PPV10]
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Distortion measure: d : An × Bn '→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
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Converse theorem

Any (M,d, ε) code must satisfy
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V (d) = Var [X(X, d)]

• Counterpart in channel coding: [PPV10]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
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(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.

0 200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

R(d)

n

R

Shannon’s achievability [Sha59]

New Achievability

New Converse

Approximation

Figure 1: Bounds to R(n, d, ε) for the equiprobable binary source, d = 0.11, ε = 10−2.

NSF Site Visit, Purdue University, Dec 1–2, 2011 Center for Science of Information NSF Science & Technology Center

Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
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Converse theorem
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Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.
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(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
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i=1 d(xi, yi)): for all 0 < ε < 1
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• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results
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(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε
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Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [?][?]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results
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Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.
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• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Lossy code: f : An !→ {1, . . . ,M} and c : {1, . . . ,M} !→ Bn.

Distortion measure: d : An × Bn !→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn
Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [?][?]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +

√
V (d)

n
Q−1 (ε) +O

(
log n

n

)

• d-tilted information:

X(x, d) = log
dPXY!

d(PX × PY!)
(x; y) + λ!d(x, y)− λ!d for P !

Y-a.e. y

= log
1

E [exp{λ!d− λ!d(x,Y!)}] (E is wrt unconditional P !
Y)

– Y! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [?]
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Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.
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ε ≤ inf
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(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
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Converse theorem

Any (M,d, ε) code must satisfy
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• Gaussian approximation
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Lossy code: f : An '→ {1, . . . ,M} and c : {1, . . . ,M} '→ Bn.

Distortion measure: d : An × Bn '→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem
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Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
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Converse theorem
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Lossy code: f : An '→ {1, . . . ,M} and c : {1, . . . ,M} '→ Bn.

Distortion measure: d : An × Bn '→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem
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Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
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lim
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R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.
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VIII. CONCLUSION

To estimate the maximum source coding rate sustainable as a function of channel blocklength

and the probability of exceeding a given distortion level, we have shown a new converse bound

(Theorem 3) and a new achievability bound (Theorem 7) applicable in full generality. As

evidenced by the numerical results, the converse in Theorem 5, which applies to the channels

satisfying a certain symmetry condition, can outperform the general converse in Theorem 3. The

asymptotic analysis of the new bounds leads to the Gaussian approximation in Theorem 9, which

holds for both discrete and Gaussian channels. Unless either the source or the channel has zero

dispersion, joint code design offers significant advantage in the finite blocklength regime.
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Lossy code: f : An )→ {1, . . . ,M} and c : {1, . . . ,M} )→ Bn.

Distortion measure: d : An × Bn )→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn
Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.
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Department of Electrical Engineering, Princeton University

Non-asymptotic rate-distortion theory

information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

nC − kR(d) ≈
√

nV + kV(d)Q−1 (ε) (13)

S equiprobable on X ∈ {1, . . . ,M}
Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Block coding: S → Sk, X → Xn, Y → Y n, Z → Zk

Code rate:
k

n
(source symbols per channel use) Separate source-channel coding:

nC − kR(d) ≈ min
η+ζ≤ε

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}
(14)

Code rate:
1

n
logM

1

k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (15)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

Any (d, ε) code for source S and channel PY |X must satisfy

ε ≥ sup
γ>0

{
sup
PȲ
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(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε
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Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results
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Non-asymptotic rate-distortion theory

information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

nC − kR(d) ≈
√

nV + kV(d)Q−1 (ε) (13)

S equiprobable on X ∈ {1, . . . ,M}
Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Block coding: S → Sk, X → Xn, Y → Y n, Z → Zk

Code rate:
k

n
(source symbols per channel use) Separate source-channel coding:

nC − kR(d) ≈ min
η+ζ≤ε

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}
(14)

Code rate:
1

n
logM

1

k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (15)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

Any (d, ε) code for source S and channel PY |X must satisfy

ε ≥ sup
γ>0

{
sup
PȲ

E
[
inf
x∈X

P
[
S(S, d)− ıX ;Ȳ (x;Y ) ≥ γ | X = x, S

]]
− exp (−γ)

}

There exists a (d, ε) source-channel code with

ε ≤ inf
PŜ,PX,M,γ>0

{
E[exp{−|ıX ;Y (X ;Y ) + logPZ(Bd(S))− logHM − log γ|+}] + E

[
(1− PZ(Bd(S)))

M
]
+ e−γ

}

• the expectations are with respect to PSPZPXPY |X ,

•HM =
∑M

m=1
1
m

•Bd(s) = {z ∈ M̂ : d(s, z) ≤ d}
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Lossy code: f : An )→ {1, . . . ,M} and c : {1, . . . ,M} )→ Bn.

Distortion measure: d : An × Bn )→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

•Need to estimate R(n, d, ε) at a given finite blocklength n.
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R(d) = inf
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Any (d, ε) code for source S and channel PY |X must satisfy

ε ≥ sup
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sup
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inf
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[
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ε ≤ inf
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(1− PZ(Bd(S)))

M
]
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}

• the expectations are with respect to PSPZPXPY |X ,

•HM =
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Rate-blocklength tradeoff for the transmission of a fair BMS over a BSC
with crossover probability δ = d = 0.11 and ε = 10−2.
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(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

•Need to estimate R(n, d, ε) at a given finite blocklength n.
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η+ζ≤ε
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}
(14)

Code rate:
1
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k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (15)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

Any (d, ε) code for source S and channel PY |X must satisfy

ε ≥ sup
γ>0

{
sup
PȲ

E
[
inf
x∈X

P
[
S(S, d)− ıX ;Ȳ (x;Y ) ≥ γ | X = x, S

]]
− exp (−γ)

}

There exists a (d, ε) source-channel code with

ε ≤ inf
PZ,PX,M,γ>0

{
E[exp{−|ıX ;Y (X ;Y ) + logPZ(Bd(S))− logHM − log γ|+}] + E

[
(1− PZ(Bd(S)))

M
]
+ e−γ

}

• the expectations are with respect to PSPZPXPY |X ,

•HM =
∑M

m=1
1
m

•Bd(s) = {z ∈ M̂ : d(s, z) ≤ d}
Rate-blocklength tradeoff for the transmission of a fair BMS over a BSC
with crossover probability δ = d = 0.11 and ε = 10−2.
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Lossy code: f : An )→ {1, . . . ,M} and c : {1, . . . ,M} )→ Bn.

Distortion measure: d : An × Bn )→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

•Need to estimate R(n, d, ε) at a given finite blocklength n.
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Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [?][?]

lim
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R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +

√
V (d)

n
Q−1 (ε) +O

(
log n

n

)

• d-tilted information:

X(x, d) = log
dPXY!

d(PX × PY!)
(x; y) + λ!d(x, y)− λ!d for P !

Y-a.e. y

= log
1

E [exp{λ!d− λ!d(x,Y!)}] (E is wrt unconditional P !
Y)

– Y! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [?]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
n
∑n

i=1 1{xi )= yi}

• d-tilted information: X(x, d) = log
1

PX(x)
− h(d)

• V (d) = Var

[
log

1

PX(X)

]
= p(1− p) log2

1− p

p

Special case: equiprobable binary source

• Zero rate dispersion: V (d) = 0

•R(n, d, ε) = 1− h(d) +
1

2

log2 n

n
+O

(
1

n

)
bits

• Converse and achievability bounds are particularly simple:
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(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε
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Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [?][?]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +
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Q−1 (ε) +O
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• d-tilted information:
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(x; y) + λ!d(x, y)− λ!d for P !

Y-a.e. y

= log
1

E [exp{λ!d− λ!d(x,Y!)}] (E is wrt unconditional P !
Y)

– Y! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [?]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
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∑n

i=1 1{xi )= yi}

• d-tilted information: X(x, d) = log
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PX(x)
− h(d)
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Lossy code: f : An &→ {1, . . . ,M} and c : {1, . . . ,M} &→ Bn.

Distortion measure: d : An × Bn &→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0
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information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

nC − kR(d) ≈
√

nV + kV(d)Q−1 (ε) (13)

S equiprobable on X ∈ {1, . . . ,M}
Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Block coding: S → Sk, X → Xn, Y → Y n, Z → Zk

Code rate:
k

n
(source symbols per channel use) Separate source-channel coding:

nC − kR(d) ≈ min
η+ζ≤ε

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}
(14)

Code rate:
1

n
logM

1

k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (15)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

Any (d, ε) code for source S and channel PY |X must satisfy

ε ≥ sup
γ>0

{
sup
PȲ

E
[
inf
x∈X

P
[
S(S, d)− ıX ;Ȳ (x;Y ) ≥ γ | X = x, S

]]
− exp (−γ)

}

There exists a (d, ε) source-channel code with

ε ≤ inf
PZ,PX,M,γ>0

{
E[exp{−|ıX ;Y (X ;Y ) + logPZ(Bd(S))− logHM − log γ|+}] + E

[
(1− PZ(Bd(S)))

M
]
+ e−γ

}

• the expectations are with respect to PSPZPXPY |X ,

•HM =
∑M

m=1
1
m

•Bd(s) = {z ∈ M̂ : d(s, z) ≤ d}
Rate-blocklength tradeoff for the transmission of a fair BMS over a BSC
with crossover probability δ = d = 0.11 and ε = 10−2.
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Distortion measure: d : An × Bn )→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

•Need to estimate R(n, d, ε) at a given finite blocklength n.
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Department of Electrical Engineering, Princeton University

Non-asymptotic rate-distortion theory

information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

nC − kR(d) ≈
√

nV + kV(d)Q−1 (ε) (13)

S equiprobable on X ∈ {1, . . . ,M}
Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Block coding: S → Sk, X → Xn, Y → Y n, Z → Zk

Code rate:
k

n
(source symbols per channel use) Separate source-channel coding:

nC − kR(d) ≈ min
η+ζ≤ε

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}
(14)

Code rate:
1

n
logM

1

k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (15)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

c 
{1, 2, …, M} 

f 
 A  B  

( , ) 
1  1  nn

nn

Lossy code: f : An (→ {1, . . . ,M} and c : {1, . . . ,M} (→ Bn.

Distortion measure: d : An × Bn (→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn
Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.

0 200 400 600 800 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

 

 

R(d)

n

R

Shannon’s achievability [Sha59]

New Achievability

New Converse

Approximation

Figure 1: Bounds to R(n, d, ε) for the equiprobable binary source, d = 0.11, ε = 10−2.

NSF Site Visit, Purdue University, Dec 1–2, 2011 Center for Science of Information NSF Science & Technology Center

Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +

√
V (d)

n
Q−1 (ε) +O
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• d-tilted information:

S(s, d) = ıS;Z!(s; z) + λ!d(s, z)− λ!d for P !
Z-a.e. z

= log
1

E [exp{λ!d− λ!d(s,Z!)}] (E is wrt unconditional P !
Z)

– Z! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [PPV10]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
n
∑n

i=1 1{xi "= yi}

• d-tilted information: X(x, d) = log
1

PX(x)
− h(d)

• V (d) = Var

[
log

1

PX(X)

]
= p(1− p) log2

1− p
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Special case: equiprobable binary source

• Zero rate dispersion: V (d) = 0

•R(n, d, ε) = 1− h(d) +
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Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
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∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [?][?]

lim
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R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0
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• Gaussian approximation
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d(PX × PY!)
(x; y) + λ!d(x, y)− λ!d for P !

Y-a.e. y

= log
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E [exp{λ!d− λ!d(x,Y!)}] (E is wrt unconditional P !
Y)

– Y! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d
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• Rate-dispersion function:
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• Counterpart in channel coding: [?]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
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Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
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∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [?][?]
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R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
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Converse theorem
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Distortion measure: d : An × Bn !→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn
Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [?][?]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.
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(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.
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ε ≤ inf
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R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

nC − kR(d) ≈
√

nV + kV(d)Q−1 (ε) (13)

S equiprobable on X ∈ {1, . . . ,M}
Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Block coding: S → Sk, X → Xn, Y → Y n, Z → Zk

Code rate:
k

n
(source symbols per channel use) Separate source-channel coding:

nC − kR(d) ≈ min
η+ζ≤ε
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kV(d)Q−1 (ζ)
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(14)

Code rate:
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Q−1 (ε) (15)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

Any (d, ε) code for source S and channel PY |X must satisfy

ε ≥ sup
γ>0

{
sup
PȲ

E
[
inf
x∈X

P
[
S(S, d)− ıX ;Ȳ (x;Y ) ≥ γ | X = x, S

]]
− exp (−γ)

}

There exists a (d, ε) source-channel code with

ε ≤ inf
PZ,PX,M,γ>0

{
E[exp{−|ıX ;Y (X ;Y ) + logPZ(Bd(S))− logHM − log γ|+}] + E

[
(1− PZ(Bd(S)))

M
]
+ e−γ

}

• the expectations are with respect to PSPZPXPY |X ,

•HM =
∑M

m=1
1
m

•Bd(s) = {z ∈ M̂ : d(s, z) ≤ d}
Rate-blocklength tradeoff for the transmission of a fair BMS over a BSC
with crossover probability δ = d = 0.11 and ε = 10−2.
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Distortion measure: d : An × Bn )→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

•Need to estimate R(n, d, ε) at a given finite blocklength n.
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Department of Electrical Engineering, Princeton University

Non-asymptotic rate-distortion theory

[TVG11] [WIK11] information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

nC − kR(d) ≈
√

nV + kV(d)Q−1 (ε) (13)

S equiprobable on X ∈ {1, . . . ,M} Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Block coding: S → Sk, X → Xn, Y → Y n, Z → Zk

Code rate:
k

n
(source symbols per channel use) Separate source-channel coding:

nC − kR(d) ≈ min
η+ζ≤ε

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}
(14)

1

k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (15)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

Any (d, ε) code for source S and channel PY |X must satisfy

ε ≥ sup
γ>0

{
sup
PȲ
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•HM =
∑M

m=1
1
m

•Bd(s) = {z ∈ M̂ : d(s, z) ≤ d}
Rate-blocklength tradeoff for the transmission of a fair BMS over a BSC
with crossover probability δ = d = 0.11 and ε = 10−2.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +

√
V (d)

n
Q−1 (ε) +O

(
log n

n

)

• d-tilted information:

S(s, d) = ıS;Z!(s; z) + λ!d(s, z)− λ!d for P !
Z-a.e. z

= log
1

E [exp{λ!d− λ!d(s,Z!)}] (E is wrt unconditional P !
Z)

– Z! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [PPV10]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
n
∑n

i=1 1{xi "= yi}

• d-tilted information: X(x, d) = log
1

PX(x)
− h(d)

• V (d) = Var

[
log

1

PX(X)

]
= p(1− p) log2

1− p

p

Special case: equiprobable binary source

• Zero rate dispersion: V (d) = 0

•R(n, d, ε) = 1− h(d) +
1

2

log2 n

n
+O

(
1

n

)
bits

• Converse and achievability bounds are particularly simple:
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information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V (d) = Var [S(S, d)] (12)

S equiprobable on X ∈ {1, . . . ,M}
Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Code rate:
1

n
logM

1

k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (13)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)
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Lossy code: f : An '→ {1, . . . ,M} and c : {1, . . . ,M} '→ Bn.

Distortion measure: d : An × Bn '→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +

√
V (d)

n
Q−1 (ε) +O

(
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)

• d-tilted information:

S(s, d) = ıS;Z!(s; z) + λ!d(s, z)− λ!d for P !
Z-a.e. z

= log
1

E [exp{λ!d− λ!d(s,Z!)}] (E is wrt unconditional P !
Z)

– Z! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [PPV10]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
n
∑n

i=1 1{xi "= yi}

• d-tilted information: X(x, d) = log
1

PX(x)
− h(d)

• V (d) = Var

[
log

1

PX(X)

]
= p(1− p) log2

1− p

p

Special case: equiprobable binary source

• Zero rate dispersion: V (d) = 0

•R(n, d, ε) = 1− h(d) +
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• Converse and achievability bounds are particularly simple:
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[TVG11] [WIK11] information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

nC − kR(d) ≈
√

nV + kV(d)Q−1 (ε) (13)

S equiprobable on X ∈ {1, . . . ,M} Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Block coding: S → Sk, X → Xn, Y → Y n, Z → Zk

Code rate:
k

n
(source symbols per channel use) Separate source-channel coding:

nC − kR(d) ≈ min
η+ζ≤ε

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}
(14)

1

k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (15)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

Any (d, ε) code for source S and channel PY |X must satisfy

ε ≥ sup
γ>0

{
sup
PȲ

E
[
inf
x∈X

P
[
S(S, d)− ıX ;Ȳ (x;Y ) ≥ γ | X = x, S

]]
− exp (−γ)

}

There exists a (d, ε) source-channel code with

ε ≤ inf
PZ,PX,M,γ>0

{
E[exp{−|ıX ;Y (X ;Y ) + logPZ(Bd(S))− logHM − log γ|+}] + E

[
(1− PZ(Bd(S)))

M
]
+ e−γ

}

• the expectations are with respect to PSPZPXPY |X ,

•HM =
∑M

m=1
1
m

•Bd(s) = {z ∈ M̂ : d(s, z) ≤ d}
Rate-blocklength tradeoff for the transmission of a fair BMS over a BSC
with crossover probability δ = d = 0.11 and ε = 10−2.

R(d)

2

√
V(d)
k

1

k
M!(k, d, ε)

ε

NSF Site Visit, Purdue University, Dec 1–2, 2011 Center for Science of Information NSF Science & Technology Center soihub.org

Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +

√
V (d)

n
Q−1 (ε) +O

(
log n

n

)

• d-tilted information:

S(s, d) = ıS;Z!(s; z) + λ!d(s, z)− λ!d for P !
Z-a.e. z

= log
1

E [exp{λ!d− λ!d(s,Z!)}] (E is wrt unconditional P !
Z)

– Z! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [PPV10]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
n
∑n

i=1 1{xi "= yi}

• d-tilted information: X(x, d) = log
1

PX(x)
− h(d)

• V (d) = Var

[
log

1

PX(X)

]
= p(1− p) log2

1− p

p

Special case: equiprobable binary source

• Zero rate dispersion: V (d) = 0

•R(n, d, ε) = 1− h(d) +
1
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)
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• Converse and achievability bounds are particularly simple:
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information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

S equiprobable on X ∈ {1, . . . ,M}
Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Code rate:
1

n
logM

1

k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (13)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)
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Lossy code: f : An '→ {1, . . . ,M} and c : {1, . . . ,M} '→ Bn.

Distortion measure: d : An × Bn '→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +

√
V (d)

n
Q−1 (ε) +O

(
log n

n

)

• d-tilted information:

S(s, d) = ıS;Z!(s; z) + λ!d(s, z)− λ!d for P !
Z-a.e. z

= log
1

E [exp{λ!d− λ!d(s,Z!)}] (E is wrt unconditional P !
Z)

– Z! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [PPV10]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
n
∑n

i=1 1{xi "= yi}

• d-tilted information: X(x, d) = log
1

PX(x)
− h(d)

• V (d) = Var

[
log

1

PX(X)

]
= p(1− p) log2

1− p

p

Special case: equiprobable binary source

• Zero rate dispersion: V (d) = 0

•R(n, d, ε) = 1− h(d) +
1

2

log2 n

n
+O

(
1

n

)
bits

• Converse and achievability bounds are particularly simple:

1−M2−n
,nd-∑

j=0

(
n

j

)
≤ ε ≤



1− 2−n
,nd-∑

j=0

(
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Gaussian source with mean-square error distortion

• Gaussian source: X ∼ N (0,σ2)

•Mean-square error distortion: d(xn, yn) = 1
n
∑n

i=1(xi − yi)
2

• d-tilted information: X(x, d) =
x2

2σ2
log e +

1

2
log

σ2

d
− 1

2
log e

•R(n, d, ε) =
1

2
log

σ2

d
+

√
1

2n
Q−1 (ε) log e +O

(
log n

n

)

Conclusions

•
• New achievability and converse bounds tightly sandwich the Gaussian approximation.

• Together with the rate-distortion function, only one new parameter (rate dispersion) is needed to give an accurate estimate of R(n, d, ε) (unless the blocklength
is very short).
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information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

nC − kR(d) ≈
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nV + kV(d)Q−1 (ε) (13)

S equiprobable on X ∈ {1, . . . ,M}
Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Block coding: S → Sk, X → Xn, Y → Y n, Z → Zk

Code rate:
k

n
(source symbols per channel use) Separate source-channel coding:

nC − kR(d) ≈ min
η+ζ≤ε
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nV Q−1 (η) +
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[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

Any (d, ε) code for source S and channel PY |X must satisfy

ε ≥ sup
γ>0

{
sup
PȲ

E
[
inf
x∈X

P
[
S(S, d)− ıX ;Ȳ (x;Y ) ≥ γ | X = x, S

]]
− exp (−γ)

}

There exists a (d, ε) source-channel code with

ε ≤ inf
PZ,PX,M,γ>0

{
E[exp{−|ıX ;Y (X ;Y ) + logPZ(Bd(S))− logHM − log γ|+}] + E

[
(1− PZ(Bd(S)))

M
]
+ e−γ

}

• the expectations are with respect to PSPZPXPY |X ,

•HM =
∑M

m=1
1
m

•Bd(s) = {z ∈ M̂ : d(s, z) ≤ d}
Rate-blocklength tradeoff for the transmission of a fair BMS over a BSC
with crossover probability δ = d = 0.11 and ε = 10−2.
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(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn

Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1 [Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.

•Need to estimate R(n, d, ε) at a given finite blocklength n.
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information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

nC − kR(d) ≈
√

nV + kV(d)Q−1 (ε) (13)

S equiprobable on X ∈ {1, . . . ,M}
Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Block coding: S → Sk, X → Xn, Y → Y n, Z → Zk

Code rate:
k

n
(source symbols per channel use) Separate source-channel coding:

nC − kR(d) ≈ min
η+ζ≤ε

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}
(14)

Code rate:
1

n
logM

1

k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (15)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

c 
{1, 2, …, M} 

f 
 A  B  

( , ) 
1  1  nn

nn

Lossy code: f : An (→ {1, . . . ,M} and c : {1, . . . ,M} (→ Bn.

Distortion measure: d : An × Bn (→ R+

(M,d, ε) code: a code with |f| = M such that P [d (X, c(f(X))) > d] ≤ ε

Rate: logMn
Fundamental problem

Suppose we operate at blocklength n = 1000 and we agree to exceed distortion d with
probability ε = 10−3. What is the smallest rate R(n, d, ε) that we can afford?

• Exact calculation of R(n, d, ε) is not computationally feasible.

• i.i.d. sources with separable distortion (i.e. d(xn, yn) = 1
n
∑n

i=1 d(xi, yi)): for all 0 < ε < 1
[Sha59][Kör73]

lim
n→∞

R(n, d, ε) = R(d)

• In applications, relatively short blocklengths are common due to delay and coding complexity constraints.
• Need to estimate R(n, d, ε) at a given finite blocklength n.
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +

√
V (d)

n
Q−1 (ε) +O

(
log n

n

)

• d-tilted information:

S(s, d) = ıS;Z!(s; z) + λ!d(s, z)− λ!d for P !
Z-a.e. z

= log
1

E [exp{λ!d− λ!d(s,Z!)}] (E is wrt unconditional P !
Z)

– Z! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [PPV10]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
n
∑n

i=1 1{xi "= yi}

• d-tilted information: X(x, d) = log
1

PX(x)
− h(d)

• V (d) = Var

[
log

1

PX(X)

]
= p(1− p) log2

1− p

p

Special case: equiprobable binary source

• Zero rate dispersion: V (d) = 0

•R(n, d, ε) = 1− h(d) +
1

2

log2 n

n
+O

(
1

n

)
bits

• Converse and achievability bounds are particularly simple:

1−M2−n
-nd.∑

j=0

(
n

j

)
≤ ε ≤



1− 2−n
-nd.∑

j=0

(
n

j

)


M
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[TVG11] [WIK11] information density: ıX ;Y (x; y) = log
dPY |X=x(y)

dPY (y)

C = E
[
ıX;Y!(X!;Y!)

]
= inf

PX

I(X;Y) (1)

V = Var
[
ıX;Y!(X!;Y!)

]
(2)

PY |X (3)

X (4)
Y (5)
Z (6)
S (7)

d (S, c(f(Z)) (8)
P [d (S,Z) > d] ≤ ε (9)

P [S "= Z] ≤ ε (10)
R(d) = E [S(S, d)] = inf

PZ|S:
E[d(S,Z)]≤d

I(S;Z) (11)

V(d) = Var [S(S, d)] (12)

nC − kR(d) ≈
√

nV + kV(d)Q−1 (ε) (13)

S equiprobable on X ∈ {1, . . . ,M} Channel block coding: X → Xn, Y → Y n

Source block coding: S → Sk, Z → Zk

Block coding: S → Sk, X → Xn, Y → Y n, Z → Zk

Code rate:
k

n
(source symbols per channel use) Separate source-channel coding:

nC − kR(d) ≈ min
η+ζ≤ε

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}
(14)

1

k
M!(k, d, ε) ≈ R(d) +

√
V(d)
k

Q−1 (ε) (15)

[KV12]

R(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) = I(S;Z!)

Any (d, ε) code for source S and channel PY |X must satisfy

ε ≥ sup
γ>0

{
sup
PȲ

E
[
inf
x∈X

P
[
S(S, d)− ıX ;Ȳ (x;Y ) ≥ γ | X = x, S

]]
− exp (−γ)

}

There exists a (d, ε) source-channel code with

ε ≤ inf
PZ,PX,M,γ>0

{
E[exp{−|ıX ;Y (X ;Y ) + logPZ(Bd(S))− logHM − log γ|+}] + E

[
(1− PZ(Bd(S)))

M
]
+ e−γ

}

• the expectations are with respect to PSPZPXPY |X ,

•HM =
∑M

m=1
1
m

•Bd(s) = {z ∈ M̂ : d(s, z) ≤ d}
Rate-blocklength tradeoff for the transmission of a fair BMS over a BSC
with crossover probability δ = d = 0.11 and ε = 10−2.

R(d)

2

√
V(d)
k

1

k
M!(k, d, ε)

ε
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Main results

• Tight upper and lower bounds to R(n, d, ε), valid for any finite n, computable in polynomial time.

Achievability theorem

There exists an (M,d, ε) code with

ε ≤ inf
PY

E (P [d(X,Y ) > d|X ])M

Converse theorem

Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp{−γ}}

• Gaussian approximation

R(n, d, ε) = R(d) +

√
V (d)

n
Q−1 (ε) +O

(
log n

n

)

• d-tilted information:

S(s, d) = ıS;Z!(s; z) + λ!d(s, z)− λ!d for P !
Z-a.e. z

= log
1

E [exp{λ!d− λ!d(s,Z!)}] (E is wrt unconditional P !
Z)

– Z! is the rate-distortion-achieving random variable;

– λ! = −R′(d).

• Rate-distortion function:

R(d) = E [X(X, d)] = inf
PY|X:

E[d(X,Y)]≤d

I(X;Y)

• Rate-dispersion function:

V (d) = Var [X(X, d)]

• Counterpart in channel coding: [PPV10]

Binary source with bit error rate distortion

• Binary source: PX(0) = p, PX(1) = 1− p

• Bit error rate distortion: d(xn, yn) = 1
n
∑n

i=1 1{xi "= yi}

• d-tilted information: X(x, d) = log
1

PX(x)
− h(d)

• V (d) = Var

[
log

1

PX(X)

]
= p(1− p) log2

1− p

p

Special case: equiprobable binary source

• Zero rate dispersion: V (d) = 0

•R(n, d, ε) = 1− h(d) +
1

2

log2 n

n
+O

(
1

n

)
bits

• Converse and achievability bounds are particularly simple:

1−M2−n
*nd+∑

j=0

(
n

j

)
≤ ε ≤



1− 2−n
*nd+∑

j=0

(
n

j

)


M


