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» The Setup: Mean squared estimation of a signal corrupted by additive white Can the mutual information rate function |(-), determine the MMSE with Letting Y; denote the channel output, we describe the channel as:

. . ini ; ?
Gausgan noise. | lookahead for finite, non-zero lookahead d * gy — SnrX;dt + dW; t <0
» Continuous-time Gaussian Channel: E= ) VAXpdt+ dWy >0

dYt = /v Xedt + dWy, (1) where, as usual, W. is a standard Brownian motion independent of X. Note that for
where X = {X; : —oo < t < oo} denotes the channel input process, and Y is B For any finite d < 0 there exist stationary continuous-time processes which ~ = snr, we recover the usual time-invariant Gaussian channel.
the output process at Signal-to-Noise ratio +. have the same mutual information rate I(snr) for all snr, but have different Definition:

» W. is a standard Brownian Motion independent of X. minimum mean squared errors with (negative) lookahead d. Letting d, I > 0, we define the finite lookahead estimation error at time d with
lookahead I as

— I+d
f(snr,v,d,l) = Var(Xg|Y_.)-

Let X be a stationary process. Define: » By Duncan’s result [1], the causal and anti-causal errors as functions of snr are

» Mutual Information rate the same (due to the mutual information acting as a bridge, which is invariant to
the direction of time). l.e.,

1(xT; vJ) )

I(v) = lim 0 " Let X3 be any finite variance continuous time stationary process which is corrupted by
N e T Var(Xo| Y=,) = Var(Xp| Yg")- the Gaussian channel in (7). Let f be as defined in (8). For snr> 0 and T > 0, we have

» Non-causal mean squared error » We present an explicit construction of a process for which 1 snr T
cmmse(snr) = T / / f(snry~,t, T — t) dt dv
- 0o Jo

mmse(y) = E | (X — EDXo| Y*1)?| Var(Xo| V<o) # Var(Xo| Y=y)
for some values of d. Note that the left and right sides of (5) are the MMSE'’s

0 ” with lookahead d associated with the original process, and its time reversed
cmmse(y) = E [(Xo — E[Xo| Y1) } version, respectively. Thus, mutual information alone does not characterize

these objects. The above theorem presents a trade-off between lookahead and signal-to-noise ratio of
the channel, as a double integral, with the causal MMSE emerging as a quantity that is
conserved under this operation.

» Causal mean squared error

From [1] and [2], we know that for all snr > 0, ~ S~ oo . . . . . .
2/(snr) i »Let X = {X;};_" _ be adiscrete time Markov Chain. Define a piecewise

snr
= cmmse(snr) = — mmse(~y) d~. constant continuous-time process X; such that N , _ _ _
snr (snr) snr/o (v) dv P o In addition to detailed proofs and discussions of the above results, in [3], we present

Xe=X; te(i—1,1] some new results relating to the role of lookahead in information-estimation.
~ The mutual information rate function completely characterizes the causal and ® ., We now apply a random shift A ~ U[0, 1] to the {X;} process to make it » We explicitly characterize the MMSE with lookahead for the class of stationary
smoothing errors as functions of snr. stationary.The resulting process X is observed through the Gaussian channel. Gauss-Markov processes, and their mixtures.

» Similarly, we construct the process X(R) which is generated from the » We introduce the notion of Information Utility of small lookahead, and show that under
discrete-time process X(R) (time-reversed version of X) using the same basic regularity conditions on the input process, this quantity is characterized by the
procedure. causal minimum mean squared error.

» In this work, we investigate the role of finite lookahead, in information and » We compare the minimum mean square errors with finite lookahead for the

estimation under mean squared loss. processes X and X(A), for a certain underlying discrete-time Markov process.
» The mean squared error with finite lookahead d is defined as

Immse(d, ~v) = E [(Xo — E[Xp| ono])z} :

» Note that d = 0 and d = oo in (3) yield the causal and non-causal errors
re S pe Ct i Ve I y. | [ | Finite ‘Lookaheacf Estimatio? Loss |
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process, corrupted by the Gaussian channel.

Note:
The mutual information rate as a function of SNR determines the three points

corresponding to the value at d = 0, and the asymptotes at ==co in the above Thus, X and X(R) have the same mutual information rate function, but different
curve. MMSE'’s with lookahead for both positive and negative lookahead.




