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INTRODUCTION & MOTIVATION
Unlike many classical settings (e.g., a binary source
reproduced subject to a Hamming distortion
constraint), several modern applications of rate
distortion theory do not require deterministic decisions
to be made at the decoder. For instance, an online
recommendation system might guess a particular
customer is male with probability 90% and female with
probability 10%. Given this assignment of likelihoods,
products can be recommended in a Bayes-optimal
fashion to maximize profit.

Motivated by this, for a finite alphabet X , define X̂ to
be the set of probability measures on X . Given x ∈ X
and x̂ ∈ X̂ , define the logarithmic loss:

d(x, x̂) = log

(
1

x̂(x)

)
.

TWO (MOSTLY) OPEN PROBLEMS
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The CEO Problem
• In the CEO problem, the sources Y1, . . . , Ym are
assumed to be conditionally independent given an
unknown variable X. Prior to this work, only the
Gaussian setting was completely solved [1, 2].

• The (two-encoder) multiterminal source coding
problem extends Shannon’s classical setup to two
separate encoders which observe correlated sources.
It is one of the simplest source coding networks which
we don’t entirely understand.
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The Multiterminal Source Coding Problem
Previously, a complete characterization of the rate
distortion region was only known in the Quadratic
Gaussian setting [3].

MAIN RESULTS
Theorem 1: (R1, . . . , Rm, D) is achievable for the
CEO problem under logarithmic loss if and only if∑

i∈I
Ri ≥ I(YI;UI|UIc, Q) for all I ⊂ {1, . . . ,m}

D ≥ H(X|U1, . . . , Um, Q)

for some joint distribution of the form

p(x)p(q)

m∏
i=1

p(yi|x)p(ui|yi, q).

Theorem 2: (R1, R2, D1, D2) is achievable for the
multiterminal source coding problem under
logarithmic loss if and only if

R1 ≥ I(Y1;U1|U2, Q)

R2 ≥ I(Y2;U2|U1, Q)

R1 +R2 ≥ I(Y1, Y2;U1, U2|Q)

D1 ≥ H(Y1|U1, U2, Q)

D2 ≥ H(Y2|U1, U2, Q)

for some joint distribution of the form

p(y1, y2)p(q)p(u1|y1, q)p(u2|y2, q).

Remark: The Berger-Tung inner bound is tight for
both problems under Logarithmic Loss.

PROOF SKETCH
The proof of Theorem 2 consists of three main steps:

1. Solve the CEO Problem. Key Ideas: A Fano-type
inequality for expected distortion, and a submodularity
argument to show inner & outer bounds coincide.

2. Couple the MTSC problem to a CEO Problem. Key
Idea: Define a new random variable X as follows

X =

{
(Y1, 1) with probability t

(Y2, 2) with probability 1− t.
Y1↔ X ↔ Y2, so we can apply converse of Thm. 1.

3. Tune the parameter t. Key Idea: Each choice of
t ∈ [0, 1] in Step 2 gives an outer bound. Can prove
the existence of a t∗ for which the outer bound meets
the Berger-Tung inner bound.

APPLICATIONS
• The CEO problem is a good representation of data
mining problems:
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d(customerType, customerGuess) ≤ D

• Theorem 2 can be applied to list decoding, horse
racing, and can also be used to obtain outer bounds
for the general multiterminal source coding problem.
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