

What is flash memory?

- ► A non-volatile storage medium used in many technologies: USB drives, digital cameras, phones, and hybrid computer hard drives.
- For the memory is organized into blocks of $\sim 10^5$ cells, each of which can be charged up to one of **q** levels.

- Increasing cell charge is easy, decreasing is costly.
- Codes for flash memories generalize Write Once Memory (WOM) codes (case when q = 2).

WOM goals and notation

- maximize the number of rewrites before erasing
- incorporate error correction
- construct low-complexity, high-rate codes

Notation:

- $\mathcal{C} = \langle \mathbf{v}_1, \dots, \mathbf{v}_t \rangle / n$ is a binary *t*-write WOM code on *n* cells, representing *v_i* messages on the *ith* write.
- $\langle v \rangle^t / n$ denotes a code where $v_1 = v_2 = \cdots = v_t$.
- The *rate* of C is

$$\frac{\log_2(v_1 \dots v_t)}{n}.$$

This code maps 2 information bits to 3 coded bits and tolerates two writes.

Info.	1 st write	2 nd write
00	000	111
01	100	011
10	010	101
11	001	110

The sequence $11 \rightarrow 10$ would be written in the memory as

 $\boxed{001} \rightarrow \boxed{101}$

PG(m, 2) and the Hamming code

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Minimum weight words in the [7, 4] Hamming code.

Lines in *PG*(2, 2)

Four writes of the Merkx PG(2, 2) WOM code.

Reed-Muller codes

functions of degree $\leq r$:

 $\mathcal{R}(r,m) = \langle$

Another geometric connection

Minimum-weight generators of the $\mathcal{R}(2, 4)$ code correspond to **2**-flats in *EG*(4, 2).

New WOM codes

Geometric WOM codes and adaptations to multilevel flash codes Kathryn Haymaker (Joint work with Dr. Christine Kelley) Department of Mathematics, University of Nebraska - Lincoln

Merkx's $\langle 7 \rangle^4 / 7$ WOM code using PG(m, 2)

Merkx [?] constructed WOM codes based on finite projective geometries over \mathbb{F}_2 .

 $|Messages| \leq |points in PG(m,2)|$

WOM codewords are one error from a binary Hamming codeword; the location of the error indicates the point that corresponds to the information message.

- Let $F = \mathbb{F}_2$, V be a vector space of dimension m over F, and $\mathbf{F}^{\mathbf{V}}$ the set of functions from $\mathbf{V} \to \mathbf{F}$.
- The Reed-Muller code of order **r** and length 2^m , $\mathcal{R}(r, m)$ is the subspace of F^V that consists of all polynomial

$$\left\langle \prod_{i\in I} x_i | I \subseteq \{1, 2, \ldots, m\}, 0 \leq |I| \leq r\} \right\rangle.$$

In general $\mathcal{R}(m-2,m) \rightleftharpoons EG(m,2)$.

The following is an example of four writes in the (8, 8, 8, 4)/8 WOM code from *EG*(3, 2):

→•4 (11111101)

• The WOM code corresponding to EG(4, 2) has parameters **(16, 16, 16, 12, 8, 8, 8, 4)** / **16.**

Result

Proposition: EG(m, 2) gives rise to a WOM code with 4(m-2) writes and parameters $\langle 2^{m}, 2^{m}, 2^{m}, 2^{m}, 2^{m} - 4, 2^{m-1}, 2^{m-1}, 2^{m-1}, 2^{m-1} - 4, \dots, 8, 8, 8, 4 \rangle / 2^{m}$

Proof idea:

- Find a hyperplane that contains the first four information points, and use the EG(3, 2) code on a 3-flat.
- Set all other points in the hyperplane to one, and use the EG(m-1,2) code on the remaining points.

Rate comparison and remarks

Code	length	rate	
PG(2,2)	7	1.60	N
EG(3,2)	8	1.38	
PG(3,2)	15	1.82	a
EG(4, 2)	16	1.66	le
PG(4, 2)	31	1.60	
EG(5,2)	32	1.50	

Using binary WOM codes on multilevel cells

Flash memory cells on q > 2-levels motivates coding strategies for 'generalized' WOMs. Reapplication of binary WOM codes provides a basis for comparison.

The complement scheme:

Use a binary WOM code on the cells.

After binary writes are exhausted, bump all cell levels to 1.

Strategies for adapting to q-level cells

R-S code on q = 3 levels using complement scheme:

Information	1 st write	2 nd write	3 rd write	4 th write
00	000	111	111	222
01	100	011	211	122
10	010	101	121	212
11	001	110	112	221

Improved schemes:

Use a WOM code C by finding a q-ary word c that is component-wise \geq current memory contents, with $c(mod2) \in C$; decodes to message. Choose c that Strategy A: minimizes the number of cells that are

- increased.
- Strategy B: minimizes the highest level cell (distribute) increases evenly among all cells).

Center for Science of Information NSF Science and Technology Center

Merkx PG codes have higher rates; EG codes have simple encoding and decoding as well as code engths that are powers of 2.

Use binary WOM on levels between 1 and 2.

Comparison of average write performance

Theorem: Let \mathcal{C} be an $\langle \mathbf{v} \rangle^t / \mathbf{n}$ binary WOM code. Then, the guaranteed number of writes by applying either strategy A or strategy B to C on q-level flash cells is at least (q - 1)t.

The average write performance of Strategies A, B, and the complement scheme for the Rivest-Shamir code, simulated on **10⁵** random message sequences to record the number of writes.

Conclusions

- Showed how EGs can be used to obtain a new family of WOM codes with structure useful in schemes that require component WOM codes.
- Introduced strategies for adapting WOM codes to multilevel cells.

Future work:

- Determine qualities of the underlying WOM code that cause either Strategy to perform better.
- Quantify average performance as $\boldsymbol{q} \to \infty$.
- Construct binary or multilevel flash codes using *q*-ary codes or other discrete structures.
- Coding for the rank modulation scheme.

The permutation induced by the cell levels on the left is (4, 1, 5, 2, 3). In general, the permutation is (x_1, x_2, \ldots, x_n) , where x_1 is the number corresponding to the cell with the highest level, x_2 the cell with the second highest level, etc.

Select references:

- **K.** Haymaker and C.A. Kelley, "Geometric WOM codes and coding strategies for multilevel flash memories," Accepted to appear in Designs, Codes and Cryptography.
- F. Merkx, "Womcodes constructed with projective geometries," Traitment du Signal, vol. 1, no. 2-2, pp. 227-231, 1984.
- R. L. Rivest and A. Shamir, "How to reuse a "write-once" memory," Inform. Control, vol. 55, pp.1-19, Oct./Nov./Dec. 1982.
- F. Chierichetti, H. Finucane, Z. Liu, M. Mitzenmacher, "Designing" floating codes for expected performance," IEEE Trans. Inform. *Theory*, vol. 56, pp. 968-978, March 2010.
- A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, "Rank modulation for flash memories," in IEEE Trans. Inform. Theory, vol. 55, no. 6, pp. 2659-2673, June 2009.

