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Introduction

Recent result of information and estimation imply a correspondence between
estimation and channel capacity. We apply these results to (causal) filtering of
an AWGN-corrupted signal in continuous time.In this poster we focus on an
example where the signal is known to be a linear combination of given
orthonormal signal set with a power constraint, and we further know that some
fraction of coefficients should be zero. In this setting, the corresponding channel
capacity problem is that for Gaussian channels with a duty cycle and power
constraints, as recently considered in [2].

Problem Setting

I Orthonormal signals set : {φi(t), 0 ≤ t ≤ T}ni=1
I Xt =

∑n
i=1 ciφi(t)

I C ∼ P where P ∈ P = {P : EP||C||22 ≤ nA and EP||C||0 ≤ k}
I dYt = Xtdt + dWt
Define
I cmseP,Q = EP

[∫ T
0 (Xt − EQ[Xt|Y t])2dt

]
I minimax(P) = min

X̂t(·),
t∈[0,T ]

max
P∈P

EP

[∫ T

0
(Xt − X̂t(Y t))2dt

]
− cmseP,P


Question

Characterize minimax(P) and the filter that achieves it.

Equivalent Problem

I

{∫ t
0 φi(s)dYs

}n

i=1
is a sufficient statistic for estimating Xt .

I Define

Ỹi(t) =

∫ t

0
φi(s)dYs

W̃i(t) =

∫ t

0
φi(s)dWs

X̃i(t) =

∫ t

0
φi(s)Xsds

(Γ(t))i,j =

∫ t

0
φi(s)φj(s)ds

I Causal estimation is equivalent to following vector estimation problem,

Ỹ (t) = X̃(t) + W̃ (t) = Γ(t)A + W̃ (t)

where W̃ (t) ∼ N (0, Γ(t))
I Note that Γ(t) does not have to be a full rank matrix. Using eigenvalue

decomposition,

Γ(t) = V (t)Λ(t)V (t)T

I Only using nonzero eigenvalues, we can get equivalent formula

Λeff(t)−1/2Veff(t)T Ỹ (t) = Λeff(t)1/2Veff(t)T A + Λeff(t)−1/2Veff(t)T W̃ (t)

Note Λeff(t)−1/2Veff(t)T W̃ (t) ∼ N (0, In−m)

Theorem : Restrict to Bayesian Estimator

Suppose the signal XT is governed by P ∈ P . LetQ denote convex hull of P .
Then, for a general loss function,

minimax(P) = min
Q∈Q

max
P∈P
{cmleP,Q − cmleP,P}

minimax(P)

I Using the recent result of information and estimation[1],

minimax(P) = min
Q∈Q

max
P∈P

cmseP,Q − cmseP,P

= min
Q∈Q

max
P∈P

D(PY T ||QY T )

= max
w∈W

I(P; Y T )

= max
P∈P

I(XT ; Y T )

I Minimum achieving distribution Q∗ is equal to capacity achieving distribution P∗.
I In our example,

minimax(P) = max
P∈P

I(C; B)

where B = (b1, · · · , bn)T and bi =
∫ T

0 φi(t)dYt .
I This problem coincides with the capacity of Gaussian Channels with duty cycle

and power constraints.
I Capacity achieving distribution pd is i.i.d. and discrete.

minimax(P) = nI(X ; Y )

where X ∼ pd and Y = X + N is noise corrupted version of X by independent
standard Gaussian noise N .

Optimal Causal Estimator

Minimax estimator is a Bayesian estimator assuming prior distribution on C is
i.i.d. pd . Denote this distribution by Q∗, then the optimal causal minimax
estiamtor is

X̂t = EQ∗[Xt|Y t]

We can compute X̂t = EQ∗[Xt|Y t] = EQ∗[Xt|Ỹ (t)].

Estimators for Comparison

I Maximum likelihood estimator (with/without thresholding)

Ĉ =
(

Λeff(t)1/2Veff(t)T
)†

Λeff(t)−1/2Veff(t)T Ỹ (t) (1)

I Minimax estimator that only knows the power constraints

E[C|Λeff(t)−1/2Veff(t)T Ỹ (t)] (2)

= PVeff(t)
(

PΛeff(t) + In−m
)−1

Veff(t)T Ỹ (t) (3)

I Genie aided estimator that also knows which coefficients are nonzero

E[Cnonzero|Λeff(t)−1/2Veff(t)T Ỹ (t)] (4)

=
nP
k

UT
eff(UeffU

T
eff + In−m)−1Λeff(t)−1/2Veff(t)T Ỹ (t) (5)

Simulation Results
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Figure: Simulation Results(Low SNR)
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